mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			778 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			778 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  PipelineModule.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2020/01/09.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "PipelineModule.hpp"
 | |
| #include <set>
 | |
| #include <vector>
 | |
| #include "StaticModule.hpp"
 | |
| #include "IfModule.hpp"
 | |
| #include "WhileModule.hpp"
 | |
| #include "NMSModule.hpp"
 | |
| #include "Utils.hpp"
 | |
| #include "core/Backend.hpp"
 | |
| #include "utils/InitNet.hpp"
 | |
| #include <MNN/expr/ExecutorScope.hpp>
 | |
| using namespace MNN::Express;
 | |
| namespace MNN {
 | |
| namespace Express {
 | |
| //#define DYNAMIC
 | |
| //#define MNN_PIPELINE_MODULE_DEBUG
 | |
| 
 | |
| ExprModule::ExprModule(EXPRP expr) {
 | |
|     mExpr   = expr;
 | |
|     setName(expr->name());
 | |
|     mInputs = expr->inputs();
 | |
|     auto op = mExpr->get();
 | |
|     if (op) {
 | |
|         auto typeName = EnumNameOpType(op->type());
 | |
|         setType(typeName);
 | |
|     }
 | |
|     for (int i = 0; i < mInputs.size(); ++i) {
 | |
|         auto inputExpr = mInputs[i]->expr().first;
 | |
|         if (inputExpr->get() != nullptr) {
 | |
|             mInputs[i] = nullptr;
 | |
|             mInputIndexes.emplace_back(i);
 | |
|             continue;
 | |
|         }
 | |
|         switch (inputExpr->inputType()) {
 | |
|             case VARP::INPUT:
 | |
|                 mInputs[i] = nullptr;
 | |
|                 mInputIndexes.emplace_back(i);
 | |
|                 break;
 | |
|             case VARP::CONSTANT:
 | |
|                 break;
 | |
|             case VARP::TRAINABLE:
 | |
|                 addParameter(mInputs[i]);
 | |
|                 break;
 | |
|             default:
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| std::vector<VARP> ExprModule::onForward(const std::vector<VARP>& inputs) {
 | |
|     MNN_ASSERT(mInputIndexes.size() == inputs.size());
 | |
|     if (nullptr == mExpr->get()) {
 | |
|         return {Variable::create(mExpr)};
 | |
|     }
 | |
|     std::vector<VARP> tempInputs = mInputs;
 | |
|     for (int i = 0; i < inputs.size(); ++i) {
 | |
|         tempInputs[mInputIndexes[i]] = inputs[i];
 | |
|     }
 | |
|     std::vector<VARP> outputVars;
 | |
|     auto newExpr = Expr::create(mExpr->extra(), std::move(tempInputs), mExpr->outputSize());
 | |
|     newExpr->setName(mExpr->name());
 | |
|     for (int i = 0; i < mExpr->outputSize(); ++i) {
 | |
|         outputVars.emplace_back(Variable::create(newExpr, i));
 | |
|     }
 | |
|     return outputVars;
 | |
| }
 | |
| 
 | |
| Module* ExprModule::clone(CloneContext* ctx) const {
 | |
|     ExprModule* module(new ExprModule(ctx->getOrClone(mExpr)));
 | |
|     for (const VARP& var : mInputs) {
 | |
|         module->mInputs.push_back(ctx->getOrClone(var));
 | |
|     }
 | |
|     module->mInputIndexes = mInputIndexes;
 | |
|     return this->cloneBaseTo(ctx, module);
 | |
| }
 | |
| 
 | |
| PipelineModule::PipelineModule(std::vector<VARP> inputs, std::vector<VARP> outputs, const Transformer& transformFunction) {
 | |
|     setType(PIPELINE_MODULE);
 | |
|     std::vector<EXPRP> executeOrder;
 | |
|     std::set<EXPRP> inputExpr;
 | |
|     for (auto v : inputs) {
 | |
|         inputExpr.insert(v->expr().first);
 | |
|     }
 | |
|     for (auto output : outputs) {
 | |
|         Expr::visit(output->expr().first,
 | |
|         [&executeOrder, &inputExpr](EXPRP expr) {
 | |
|             if (expr->visited()) {
 | |
|                 return false;
 | |
|             }
 | |
|             if (inputExpr.find(expr)!= inputExpr.end()) {
 | |
|                 expr->setVisited(true);
 | |
|                 executeOrder.emplace_back(expr);
 | |
|                 return false;
 | |
|             }
 | |
|             return true;
 | |
|         },
 | |
|         [&executeOrder](EXPRP expr) {
 | |
|             //FUNC_PRINT_ALL(var->name().c_str(), s);
 | |
|             if (!expr->visited()) {
 | |
|                 executeOrder.emplace_back(expr);
 | |
|                 expr->setVisited(true);
 | |
|             }
 | |
|             return true;
 | |
|         });
 | |
|     }
 | |
|     for (auto expr : executeOrder) {
 | |
|         expr->setVisited(false);
 | |
|     }
 | |
|     // Set Indexes
 | |
|     std::map<EXPRP, int> indexes;
 | |
|     int currentIndexes = 0;
 | |
|     for (auto expr : executeOrder) {
 | |
|         indexes[expr] = currentIndexes;
 | |
|         currentIndexes += expr->outputSize();
 | |
|     }
 | |
|     std::set<EXPRP> inputSets;
 | |
|     mInputIndexes.clear();
 | |
|     mStackSize = currentIndexes;
 | |
|     for (auto v : inputs) {
 | |
|         auto inputExpr = v->expr();
 | |
|         mInputIndexes.emplace_back(indexes[inputExpr.first] + inputExpr.second);
 | |
|         inputSets.insert(inputExpr.first);
 | |
|     }
 | |
| 
 | |
|     // Create All SubModule
 | |
|     for (auto expr : executeOrder) {
 | |
|         if (inputSets.find(expr) != inputSets.end()) {
 | |
|             continue;
 | |
|         }
 | |
|         std::pair<std::vector<int>, std::shared_ptr<Module> > moduleResult;
 | |
|         bool extracted = false;
 | |
|         if (!transformFunction) {
 | |
|             moduleResult = std::make_pair(std::vector<int>{}, std::shared_ptr<Module>(nullptr));
 | |
|         } else {
 | |
|             moduleResult = transformFunction(expr);
 | |
|         }
 | |
|         if (moduleResult.second == nullptr) {
 | |
|             std::shared_ptr<Module> module(new ExprModule(expr));
 | |
|             moduleResult.first  = ((ExprModule*)module.get())->inputIndexes();
 | |
|             moduleResult.second = module;
 | |
|         } else {
 | |
|             extracted = true;
 | |
|         }
 | |
|         auto subInputs        = expr->inputs();
 | |
|         auto& exprInputIndexes = moduleResult.first;
 | |
|         std::vector<int> inputIndexes;
 | |
|         if (exprInputIndexes.empty() && extracted) {
 | |
|             inputIndexes.resize(subInputs.size());
 | |
|             for (int i = 0; i < inputIndexes.size(); ++i) {
 | |
|                 auto inputExpr  = subInputs[i]->expr();
 | |
|                 inputIndexes[i] = indexes[inputExpr.first] + inputExpr.second;
 | |
|             }
 | |
|         } else {
 | |
|             inputIndexes.resize(exprInputIndexes.size());
 | |
|             for (int i = 0; i < inputIndexes.size(); ++i) {
 | |
|                 auto inputExpr  = subInputs[exprInputIndexes[i]]->expr();
 | |
|                 inputIndexes[i] = indexes[inputExpr.first] + inputExpr.second;
 | |
|             }
 | |
|         }
 | |
|         std::vector<int> outputIndexes(expr->outputSize());
 | |
|         for (int i = 0; i < outputIndexes.size(); ++i) {
 | |
|             outputIndexes[i] = indexes[expr] + i;
 | |
|         }
 | |
|         mSubModules.emplace_back(std::make_tuple(moduleResult.second, inputIndexes, outputIndexes));
 | |
|         registerModel({moduleResult.second});
 | |
|     }
 | |
|     mOutputIndexes.clear();
 | |
|     for (auto output : outputs) {
 | |
|         auto outputExpr = output->expr();
 | |
|         mOutputIndexes.emplace_back(indexes[outputExpr.first] + outputExpr.second);
 | |
|     }
 | |
| }
 | |
| 
 | |
| std::vector<int> PipelineModule::countOutputReference(std::vector<int> outputIndices) {
 | |
|     MNN_ASSERT(outputIndices.size() > 0);
 | |
|     std::vector<int> countResult(outputIndices.size(), 0);
 | |
| 
 | |
|     for (int i = 0; i < mSubModules.size(); i++) {
 | |
|         auto &m = mSubModules[i];
 | |
|         auto& theModule = std::get<0>(m);
 | |
|         auto name = theModule->name();
 | |
|         auto &inputIndices = std::get<1>(m);
 | |
| 
 | |
|         for (int j = 0; j < inputIndices.size(); j++) {
 | |
|             int index = inputIndices[j];
 | |
|             for (int k = 0; k < countResult.size(); k++) {
 | |
|                 if (index == outputIndices[k]) {
 | |
|                     countResult[k]++;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return countResult;
 | |
| }
 | |
| 
 | |
| std::vector<VARP> PipelineModule::onForward(const std::vector<VARP>& inputs) {
 | |
|     std::vector<VARP> mStack(mStackSize);
 | |
|     for (int i = 0; i < mInitVars.size(); ++i) {
 | |
|         mStack[i] = mInitVars[i];
 | |
|     }
 | |
|     for (int i = 0; i < mInputIndexes.size(); ++i) {
 | |
|         mStack[mInputIndexes[i]] = inputs[i];
 | |
|     }
 | |
|     for (int index = 0; index < mSubModules.size(); ++index) {
 | |
|         auto& m = mSubModules[index];
 | |
|         std::vector<VARP> tempInputs(std::get<1>(m).size());
 | |
|         for (int i = 0; i < tempInputs.size(); ++i) {
 | |
|             tempInputs[i] = mStack[std::get<1>(m)[i]];
 | |
|             MNN_ASSERT(nullptr != tempInputs[i]);
 | |
|         }
 | |
|         std::vector<VARP> tempOutputs = std::get<0>(m)->onForward(tempInputs);
 | |
|         if(tempOutputs.size() != std::get<2>(m).size()) {
 | |
|             // Execute has error
 | |
|             return {};
 | |
|         }
 | |
|         for (int i = 0; i < tempOutputs.size(); ++i) {
 | |
|             mStack[std::get<2>(m)[i]] = tempOutputs[i];
 | |
|             MNN_ASSERT(nullptr != tempOutputs[i]);
 | |
|         }
 | |
|     }
 | |
|     std::vector<VARP> outputs(mOutputIndexes.size());
 | |
|     for (int i = 0; i < mOutputIndexes.size(); ++i) {
 | |
|         outputs[i] = mStack[mOutputIndexes[i]];
 | |
|     }
 | |
|     return outputs;
 | |
| }
 | |
| void PipelineModule::onClearCache() {
 | |
|     // Do nothing
 | |
| }
 | |
| 
 | |
| void PipelineModule::_createSubGraph(const MNN::Net* net, std::shared_ptr<MNN::Express::Executor::RuntimeManager> rtMgr, const Module::Config* config, std::map<std::string, SubGraph>& subGraphMap) {
 | |
|     auto subGraphs = net->subgraphs();
 | |
|     if (nullptr == subGraphs) {
 | |
|         return;
 | |
|     }
 | |
|     for (int i=0; i<subGraphs->size(); ++i) {
 | |
|         auto graph = subGraphs->GetAs<SubGraphProto>(i);
 | |
|         std::vector<std::string> subInputs;
 | |
|         std::vector<std::string> subOutputs;
 | |
|         if (nullptr != graph->inputs()) {
 | |
|             for (int v=0; v<graph->inputs()->size(); ++v) {
 | |
|                 auto index = graph->inputs()->data()[v];
 | |
|                 subInputs.emplace_back(graph->tensors()->GetAsString(index)->str());
 | |
|             }
 | |
|         }
 | |
|         for (int v=0; v<graph->outputs()->size(); ++v) {
 | |
|             auto index = graph->outputs()->data()[v];
 | |
|             subOutputs.emplace_back(graph->tensors()->GetAsString(index)->str());
 | |
|         }
 | |
| #ifdef MNN_PIPELINE_MODULE_DEBUG
 | |
|         for (auto& s : subOutputs) {
 | |
|             FUNC_PRINT_ALL(s.c_str(), s);
 | |
|         }
 | |
|         FUNC_PRINT_ALL(graph->name()->c_str(), s);
 | |
| #endif
 | |
|         // Pack to Net for loading
 | |
|         std::shared_ptr<Module> submodule;
 | |
|         {
 | |
|             std::unique_ptr<SubGraphProtoT> _tempInfo(graph->UnPack());
 | |
|             std::unique_ptr<NetT> _tempNet(new NetT);
 | |
|             _tempNet->oplists = std::move(_tempInfo->nodes);
 | |
|             _tempNet->tensorName = std::move(_tempInfo->tensors);
 | |
|             _tempNet->extraTensorDescribe = std::move(_tempInfo->extraTensorDescribe);
 | |
|             flatbuffers::FlatBufferBuilder builder(1024);
 | |
|             auto offset = Net::Pack(builder, _tempNet.get());
 | |
|             builder.Finish(offset);
 | |
|             submodule.reset(PipelineModule::load(subInputs, subOutputs, (const uint8_t*)builder.GetBufferPointer(), builder.GetSize(), rtMgr, config, subGraphMap, true));
 | |
|             if (graph->name() != nullptr) {
 | |
|                 submodule->setName(graph->name()->str());
 | |
|             }
 | |
|         }
 | |
|         auto key = graph->name()->str();
 | |
|         SubGraph subgraph;
 | |
|         subgraph.inputs = std::move(subInputs);
 | |
|         subgraph.outputs = std::move(subOutputs);
 | |
|         subgraph.m = submodule;
 | |
|         subGraphMap.insert(std::make_pair(key, subgraph));
 | |
|     }
 | |
|     return;
 | |
| }
 | |
| 
 | |
| struct SubModuleInfo {
 | |
|     std::vector<int> opList;
 | |
|     std::vector<int> inputs;;
 | |
|     std::vector<int> outputs;
 | |
|     std::vector<uint8_t> tensorMask;
 | |
|     bool isBreak = false;
 | |
| };
 | |
| static void _computeTensorMask(SubModuleInfo& m, const Net* net) {
 | |
|     /**Compute All SubModule's inputs and outputs*/
 | |
|     // 0: not use, 1: input, 2: output, 3: mid, 4: valid output
 | |
|     m.tensorMask = std::vector<uint8_t>(net->tensorName()->size(), 0);
 | |
|     auto& tensorMask = m.tensorMask;
 | |
|     for (auto opIndex : m.opList) {
 | |
|         auto op = net->oplists()->GetAs<Op>(opIndex);
 | |
|         if (nullptr != op->inputIndexes()) {
 | |
|             for (int v=0; v<op->inputIndexes()->size(); ++v) {
 | |
|                 auto index = op->inputIndexes()->data()[v];
 | |
|                 tensorMask[index] = tensorMask[index] | 1;
 | |
|             }
 | |
|         }
 | |
|         if (nullptr != op->outputIndexes()) {
 | |
|             for (int v=0; v<op->outputIndexes()->size(); ++v) {
 | |
|                 auto index = op->outputIndexes()->data()[v];
 | |
|                 tensorMask[index] = tensorMask[index] | 2;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool isBreakOp(const Op* op) {
 | |
|     if (op->type() == OpType_If || op->type() == OpType_While || op->type() == OpType_Where || op->type() == OpType_Segment || op->type() == OpType_Unique || op->type() == OpType_NonMaxSuppressionV2) {
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static std::vector<int> _collectNeededOps(const MNN::Net* net, const std::set<int>& inputIndexes, const std::set<int>& outputIndexes) {
 | |
|     // 0: not set, 1: output, 2:input
 | |
|     std::vector<int> tensorMask(net->tensorName()->size());
 | |
|     ::memset(tensorMask.data(), 0, tensorMask.size() * sizeof(int));
 | |
| 
 | |
|     // 0: use, 1: no use
 | |
|     std::vector<int> opMask(net->oplists()->size());
 | |
|     ::memset(opMask.data(), 0, opMask.size() * sizeof(int));
 | |
|     
 | |
|     // Set Initial Status
 | |
|     for (auto v : outputIndexes) {
 | |
|         tensorMask[v] = 1;
 | |
|     }
 | |
|     for (auto v : inputIndexes) {
 | |
|         // If both input/output, set as input
 | |
|         tensorMask[v] = 2;
 | |
|     }
 | |
|     bool change = false;
 | |
|     do {
 | |
|         change = false;
 | |
|         for (int i=0; i<opMask.size(); ++i) {
 | |
|             if (opMask[i] > 0) {
 | |
|                 continue;
 | |
|             }
 | |
|             auto op = net->oplists()->GetAs<Op>(i);
 | |
|             if (nullptr != op->outputIndexes()) {
 | |
|                 for (int j=0; j<op->outputIndexes()->size(); ++j) {
 | |
|                     auto index = op->outputIndexes()->data()[j];
 | |
|                     if (tensorMask[index] == 1) {
 | |
|                         opMask[i] = 1;
 | |
|                         change = true;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (nullptr != op->inputIndexes() && opMask[i]) {
 | |
|                 for (int j=0; j<op->inputIndexes()->size(); ++j) {
 | |
|                     auto index = op->inputIndexes()->data()[j];
 | |
|                     if (tensorMask[index] != 2) {
 | |
|                         tensorMask[index] = 1;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } while (change);
 | |
| 
 | |
|     std::vector<int> ops;
 | |
|     for (int i=0; i<opMask.size(); ++i) {
 | |
|         if (opMask[i] > 0) {
 | |
|             auto op = net->oplists()->GetAs<Op>(i);
 | |
|             if (needComputeOp(op)) {
 | |
|                 ops.emplace_back(i);
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return ops;
 | |
| }
 | |
| 
 | |
| static std::vector<SubModuleInfo> _createSubModuleInfo(const MNN::Net* net, const std::set<int>& inputIndexes, const std::set<int>& outputIndexes, const std::set<int>& noComputeIndexes, std::shared_ptr<Schedule::ScheduleInfo> sharedConst, std::map<int, VARP>& initVars) {
 | |
|     std::vector<SubModuleInfo> submodule;
 | |
|     auto selectOps = _collectNeededOps(net, inputIndexes, outputIndexes);
 | |
| 
 | |
|     // Seperate the graph to serveral submodule
 | |
|     SubModuleInfo current;
 | |
|     for (int si=0; si<selectOps.size(); ++si) {
 | |
|         auto i = selectOps[si];
 | |
|         auto op = net->oplists()->GetAs<Op>(i);
 | |
|         if (isBreakOp(op)) {
 | |
|             // TODO: Don't need split segment
 | |
|             if (current.opList.size() > 0) {
 | |
|                 // Not empty
 | |
|                 // Init tensormask
 | |
|                 _computeTensorMask(current, net);
 | |
|                 submodule.emplace_back(std::move(current));
 | |
|             }
 | |
|             SubModuleInfo controlOp;
 | |
|             controlOp.opList = {i};
 | |
|             controlOp.isBreak = true;
 | |
|             if (nullptr != op->inputIndexes()) {
 | |
|                 controlOp.inputs.resize(op->inputIndexes()->size());
 | |
|                 ::memcpy(controlOp.inputs.data(), op->inputIndexes()->data(), controlOp.inputs.size() * sizeof(int));
 | |
|                 for (int v=0; v<op->inputIndexes()->size(); ++v) {
 | |
|                     auto index = op->inputIndexes()->data()[v];
 | |
|                     if (noComputeIndexes.find(index) != noComputeIndexes.end()) {
 | |
|                         auto constVar = Variable::create(Expr::create(sharedConst->allTensors[index].get()));
 | |
|                         initVars.insert(std::make_pair(index, constVar));
 | |
|                         continue;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (nullptr != op->outputIndexes()) {
 | |
|                 controlOp.outputs.resize(op->outputIndexes()->size());
 | |
|                 ::memcpy(controlOp.outputs.data(), op->outputIndexes()->data(), controlOp.outputs.size() * sizeof(int));
 | |
|             }
 | |
|             submodule.emplace_back(std::move(controlOp));
 | |
|             continue;
 | |
|         }
 | |
|         bool merged = false;
 | |
| #ifdef MNN_MODULE_FUSE_OPT
 | |
|         // TODO: Currently has bug
 | |
|         // Find old approciate submodule
 | |
|         for (auto& m : submodule) {
 | |
|             if (m.isBreak) {
 | |
|                 continue;
 | |
|             }
 | |
|             bool valid = true;
 | |
|             bool hasNotConst = false;
 | |
|             if (op->inputIndexes() != nullptr) {
 | |
|                 for (int v=0; v<op->inputIndexes()->size(); ++v) {
 | |
|                     auto index = op->inputIndexes()->data()[v];
 | |
|                     if (noComputeIndexes.find(index) != noComputeIndexes.end()) {
 | |
|                         continue;
 | |
|                     }
 | |
|                     hasNotConst = true;
 | |
|                     if (m.tensorMask[index] == 0) {
 | |
|                         valid = false;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (valid && hasNotConst) {
 | |
|                 merged = true;
 | |
|                 m.opList.emplace_back(i);
 | |
|                 // Update tensorMask
 | |
|                 for (int v=0; v<op->outputIndexes()->size(); ++v) {
 | |
|                     auto index = op->outputIndexes()->data()[v];
 | |
|                     m.tensorMask[index] = m.tensorMask[index] | 2;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         if (!merged) {
 | |
|             current.opList.emplace_back(i);
 | |
|         }
 | |
|     }
 | |
|     if (!current.opList.empty()) {
 | |
|         _computeTensorMask(current, net);
 | |
|         submodule.emplace_back(std::move(current));
 | |
|     }
 | |
|     for (int moduleIndex=0; moduleIndex < submodule.size(); ++moduleIndex) {
 | |
|         auto& m = submodule[moduleIndex];
 | |
|         // Compute input / output
 | |
|         if (!m.isBreak) {
 | |
|             for (int i=0; i<m.tensorMask.size(); ++i) {
 | |
|                 if (0 == m.tensorMask[i]) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 if (1 == m.tensorMask[i]) {
 | |
|                     if (noComputeIndexes.find(i) != noComputeIndexes.end()) {
 | |
|                         continue;
 | |
|                     }
 | |
|                     m.inputs.emplace_back(i);
 | |
|                     continue;
 | |
|                 }
 | |
|                 if (2 == m.tensorMask[i]) {
 | |
|                     m.outputs.emplace_back(i);
 | |
|                     continue;
 | |
|                 }
 | |
|                 if (3 == m.tensorMask[i]) {
 | |
|                     if (outputIndexes.find(i) != outputIndexes.end()) {
 | |
|                         m.outputs.emplace_back(i);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         // Check if the module's input is valid
 | |
|         for (int i=0; i<m.inputs.size(); ++i) {
 | |
|             auto index = m.inputs[i];
 | |
|             if (inputIndexes.find(index) != inputIndexes.end()) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (noComputeIndexes.find(index) != noComputeIndexes.end()) {
 | |
|                 continue;
 | |
|             }
 | |
|             bool find = false;
 | |
|             for (int sub=0; sub < moduleIndex; ++sub) {
 | |
|                 for (auto out : submodule[sub].outputs) {
 | |
|                     if (out == index) {
 | |
|                         find = true;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if (find) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (find) {
 | |
|                 continue;
 | |
|             }
 | |
|             // Find from module
 | |
|             for (int sub=0; sub < moduleIndex; ++sub) {
 | |
|                 if (submodule[sub].tensorMask.empty()) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 if (submodule[sub].tensorMask[index] == 2) {
 | |
|                     find = true;
 | |
|                     break;
 | |
|                 }
 | |
|                 if (submodule[sub].tensorMask[index] == 3) {
 | |
|                     submodule[sub].outputs.emplace_back(index);
 | |
|                     submodule[sub].tensorMask[index] = 2;
 | |
|                     find = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (!find) {
 | |
|                 if (net->tensorName() != nullptr) {
 | |
|                     MNN_PRINT("%d tensor [ %s ] is input but not found\n", index, net->tensorName()->GetAsString(index)->c_str());
 | |
|                 }
 | |
|             }
 | |
|             MNN_ASSERT(find);
 | |
|         }
 | |
|     }
 | |
|     for (auto& m : submodule) {
 | |
|         m.tensorMask.clear();
 | |
|     }
 | |
|     return submodule;
 | |
| }
 | |
| 
 | |
| static Module* _createSubModule(const MNN::Net* net, const SubModuleInfo& info, const std::map<std::string, SubGraph>& subs, std::shared_ptr<MNN::Express::Executor::RuntimeManager> rtMgr, const Module::Config& config, bool inRecurse, std::shared_ptr<Schedule::ScheduleInfo> sharedConst) {
 | |
|     if (1 == info.opList.size()) {
 | |
|         auto op = net->oplists()->GetAs<Op>(info.opList[0]);
 | |
|         if (OpType_If == op->type()) {
 | |
|             return IfModule::create(op, subs);
 | |
|         }
 | |
|         if (OpType_While == op->type()) {
 | |
|             return WhileModule::create(op, subs);
 | |
|         }
 | |
|         if (OpType_NonMaxSuppressionV2 == op->type()) {
 | |
|             return NMSModule::create(op);
 | |
|         }
 | |
|         // MNN_ASSERT(false);
 | |
|     }
 | |
|     std::unique_ptr<NetT> _tempNet(new NetT);
 | |
|     // Copy Tensor Name
 | |
|     _tempNet->tensorName.resize(net->tensorName()->size());
 | |
|     for (int i=0; i<net->tensorName()->size(); ++i) {
 | |
|         _tempNet->tensorName[i] = net->tensorName()->GetAsString(i)->str();
 | |
|     }
 | |
|     // Copy Tensor Describe for quant model
 | |
|     if (net->extraTensorDescribe()) {
 | |
|         _tempNet->extraTensorDescribe.resize(net->extraTensorDescribe()->size());
 | |
|         for (int i=0; i<net->extraTensorDescribe()->size(); ++i) {
 | |
|             _tempNet->extraTensorDescribe[i].reset(net->extraTensorDescribe()->Get(i)->UnPack());
 | |
|         }
 | |
|     }
 | |
|     // Create Input node
 | |
|     std::vector<std::string> inputNames;
 | |
|     for (auto index : info.inputs) {
 | |
|         std::unique_ptr<OpT> inputOp(new OpT);
 | |
|         inputOp->outputIndexes = {index};
 | |
|         inputOp->type = OpType_Input;
 | |
|         inputOp->main.type = OpParameter_Input;
 | |
|         inputOp->main.value = new InputT;
 | |
|         inputOp->main.AsInput()->dims = {0, 0, -1, -1};
 | |
|         _tempNet->oplists.emplace_back(std::move(inputOp));
 | |
|         inputNames.emplace_back(_tempNet->tensorName[index]);
 | |
|     }
 | |
|     // Create compute node
 | |
|     for (auto opIndex : info.opList) {
 | |
|         std::unique_ptr<OpT> op(net->oplists()->GetAs<Op>(opIndex)->UnPack());
 | |
|         _tempNet->oplists.emplace_back(std::move(op));
 | |
|     }
 | |
|     // Get output names
 | |
|     std::vector<std::string> outputNames;
 | |
|     for (auto index : info.outputs) {
 | |
|         outputNames.emplace_back(_tempNet->tensorName[index]);
 | |
|     }
 | |
|     // Create Net Buffer
 | |
|     flatbuffers::FlatBufferBuilder builder(1024);
 | |
|     auto offset = Net::Pack(builder, _tempNet.get());
 | |
|     builder.Finish(offset);
 | |
|     _tempNet.reset();
 | |
|     return new StaticModule((const uint8_t*)builder.GetBufferPointer(), builder.GetSize(), inputNames, outputNames, rtMgr, config, inRecurse, sharedConst);
 | |
| }
 | |
| 
 | |
| Module* PipelineModule::load(const std::vector<std::string>& inputs, const std::vector<std::string>& outputs, const uint8_t* buffer, size_t length, const std::shared_ptr<MNN::Express::Executor::RuntimeManager> rtMgr, const Module::Config* config) {
 | |
|     // Create Subgraph
 | |
|     auto net = GetNet(buffer);
 | |
|     if (nullptr == net->oplists() || nullptr == net->tensorName()) {
 | |
|         MNN_ERROR("Invalid net, for null oplist or tensorName\n");
 | |
|         return nullptr;
 | |
|     }
 | |
|     Module::Config defaultConfig;
 | |
|     if (nullptr == config) {
 | |
|         config = &defaultConfig;
 | |
|     }
 | |
|     auto subGraphs = net->subgraphs();
 | |
|     std::map<std::string, SubGraph> subGraphMap;
 | |
|     _createSubGraph(net, rtMgr, config, subGraphMap);
 | |
|     return load(inputs, outputs, buffer, length, rtMgr, config, subGraphMap);
 | |
| }
 | |
| 
 | |
| Module* PipelineModule::load(const std::vector<std::string>& inputs, const std::vector<std::string>& outputs, const uint8_t* buffer, size_t length, std::shared_ptr<MNN::Express::Executor::RuntimeManager> rtMgr, const Module::Config* config, std::map<std::string, SubGraph>& subGraphMap, bool inRecurce) {
 | |
|     std::shared_ptr<Schedule::ScheduleInfo> sharedConst;
 | |
|     auto net = GetNet(buffer);
 | |
|     if (!config->dynamic) {
 | |
|         bool linear = true;
 | |
|         for (int i=0; i<net->oplists()->size(); ++i) {
 | |
|             auto iter = net->oplists()->GetAs<Op>(i);
 | |
|             if (isBreakOp(iter)) {
 | |
|                 linear = false;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (linear) {
 | |
|             // Has no control flow and WhereOp, can just use static module
 | |
|             return new StaticModule(buffer, length, inputs, outputs, rtMgr, *config, false, sharedConst);
 | |
|         }
 | |
|     }
 | |
|     // Extra Const Tensors
 | |
|     sharedConst.reset(new Schedule::ScheduleInfo);
 | |
|     auto runtime = Executor::getGlobalExecutor()->getRuntime().second;
 | |
|     BackendConfig defaultConfig;
 | |
|     defaultConfig.flags = 4;
 | |
|     std::shared_ptr<Backend> defaultBackend(runtime->onCreate(&defaultConfig));
 | |
|     sharedConst->defaultBackend = defaultBackend;
 | |
|     std::vector<std::shared_ptr<Tensor>> allTensors;
 | |
|     sharedConst->allTensors.resize(net->tensorName()->size());
 | |
|     ErrorCode code = NO_ERROR;
 | |
|     std::set<int> noneedComputeIndexes;
 | |
|     initConstTensors(sharedConst->allTensors, net, defaultBackend.get(), code);
 | |
|     if (NO_ERROR != code) {
 | |
|         MNN_ERROR("Alloc memory for const tensor error\n");
 | |
|         return nullptr;
 | |
|     }
 | |
|     for (int i=0; i<sharedConst->allTensors.size(); ++i) {
 | |
|         if (sharedConst->allTensors[i].get() != nullptr) {
 | |
|             noneedComputeIndexes.insert(i);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::map<int, VARP> initVars;
 | |
|     std::set<int> inputIndexes;
 | |
|     std::set<int> outputIndexes;
 | |
|     std::map<std::string, int> inputsMap;
 | |
|     std::map<std::string, int> outputsMap;
 | |
|     for (int i=0; i<net->tensorName()->size(); ++i) {
 | |
|         auto tname = net->tensorName()->GetAsString(i)->str();
 | |
|         for (auto& s : inputs) {
 | |
|             if (tname == s) {
 | |
|                 inputIndexes.emplace(i);
 | |
|                 inputsMap.insert(std::make_pair(s, i));
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         for (auto& s : outputs) {
 | |
|             if (tname == s) {
 | |
|                 outputIndexes.emplace(i);
 | |
|                 outputsMap.insert(std::make_pair(s, i));
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     std::vector<int> inputIndexesVec(inputs.size());
 | |
|     for (int i=0; i<inputs.size(); ++i) {
 | |
|         inputIndexesVec[i] = inputsMap[inputs[i]];
 | |
|     }
 | |
|     std::vector<int> outputIndexesVec(outputs.size());
 | |
|     for (int i=0; i<outputs.size(); ++i) {
 | |
|         outputIndexesVec[i] = outputsMap[outputs[i]];
 | |
|     }
 | |
|     auto subModulesInfo = _createSubModuleInfo(net, inputIndexes, outputIndexes, noneedComputeIndexes, sharedConst, initVars);
 | |
|     std::vector<std::shared_ptr<Module>> subModules(subModulesInfo.size());
 | |
|     for (int i=0; i<subModulesInfo.size(); ++i) {
 | |
|         subModules[i].reset(_createSubModule(net, subModulesInfo[i], subGraphMap, rtMgr, *config, inRecurce, sharedConst));
 | |
|     }
 | |
|     auto result = new PipelineModule;
 | |
|     /**
 | |
|      Compute:
 | |
|      std::vector<std::tuple<std::shared_ptr<Module>, std::vector<int>, std::vector<int>>> mSubModules;
 | |
|      std::vector<int> mInputIndexes;
 | |
|      std::vector<int> mOutputIndexes;
 | |
|      int mStackSize = 0;
 | |
|      */
 | |
|     // Make Stack, first: origin, second: new
 | |
|     std::map<int, int> stackMap;
 | |
|     int stackIndex = 0;
 | |
|     for (auto& p : initVars) {
 | |
|         stackMap.insert(std::make_pair(p.first, stackIndex));
 | |
|         result->mInitVars.emplace_back(p.second);
 | |
|         stackIndex++;
 | |
|     }
 | |
|     for (auto index : inputIndexesVec) {
 | |
|         if (stackMap.find(index) == stackMap.end()) {
 | |
|             stackMap.insert(std::make_pair(index, stackIndex));
 | |
|             stackIndex++;
 | |
|         }
 | |
|     }
 | |
|     for (auto& m : subModulesInfo) {
 | |
|         for (auto index : m.inputs) {
 | |
|             if (stackMap.find(index) == stackMap.end()) {
 | |
|                 stackMap.insert(std::make_pair(index, stackIndex));
 | |
|                 stackIndex++;
 | |
|             }
 | |
|         }
 | |
|         for (auto index : m.outputs) {
 | |
|             if (stackMap.find(index) == stackMap.end()) {
 | |
|                 stackMap.insert(std::make_pair(index, stackIndex));
 | |
|                 stackIndex++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     result->mStackSize = stackMap.size();
 | |
|     MNN_ASSERT(result->mStackSize > 0);
 | |
|     for (int i=0; i<subModulesInfo.size(); ++i) {
 | |
|         auto& info = subModulesInfo[i];
 | |
|         // Reindex stack index
 | |
|         std::vector<int> subInputs(info.inputs.size());
 | |
|         for (int i=0; i<info.inputs.size(); ++i) {
 | |
|             subInputs[i] = stackMap[info.inputs[i]];
 | |
|         }
 | |
|         std::vector<int> subOutputs(info.outputs.size());
 | |
|         for (int i=0; i<info.outputs.size(); ++i) {
 | |
|             subOutputs[i] = stackMap[info.outputs[i]];
 | |
|         }
 | |
|         result->mSubModules.emplace_back(std::make_tuple(subModules[i], subInputs, subOutputs));
 | |
|     }
 | |
|     for (int i=0; i<inputIndexesVec.size(); ++i) {
 | |
|         inputIndexesVec[i] = stackMap[inputIndexesVec[i]];
 | |
|     }
 | |
|     for (int i=0; i<outputIndexesVec.size(); ++i) {
 | |
|         outputIndexesVec[i] = stackMap[outputIndexesVec[i]];
 | |
|     }
 | |
|     result->mInputIndexes = std::move(inputIndexesVec);
 | |
|     result->mOutputIndexes = std::move(outputIndexesVec);
 | |
|     return result;
 | |
| 
 | |
| }
 | |
| 
 | |
| Module* PipelineModule::clone(CloneContext* ctx) const {
 | |
|     PipelineModule* module(new PipelineModule);
 | |
|     for (const auto& it : mSubModules) {
 | |
|         const std::shared_ptr<Module>& submodule = std::get<0>(it);
 | |
|         const std::vector<int>& input_indices = std::get<1>(it);
 | |
|         const std::vector<int>& output_indices = std::get<2>(it);
 | |
|         std::shared_ptr<Module> replica_submodule(submodule->clone(ctx));
 | |
|         module->mSubModules.push_back(
 | |
|             std::make_tuple(replica_submodule, input_indices, output_indices));
 | |
|         module->registerModel({replica_submodule});
 | |
|     }
 | |
|     module->mInputIndexes = mInputIndexes;
 | |
|     module->mOutputIndexes = mOutputIndexes;
 | |
|     module->mStackSize = mStackSize;
 | |
|     module->mInitVars = mInitVars;
 | |
|     return this->cloneBaseTo(ctx, module);
 | |
| }
 | |
| 
 | |
| 
 | |
| } // namespace Express
 | |
| } // namespace MNN
 |