mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			156 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			156 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  GeometryPermute.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2020/04/03.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "geometry/GeometryComputer.hpp"
 | |
| #include "core/TensorUtils.hpp"
 | |
| namespace MNN {
 | |
| class GeometryPermute : public GeometryComputer {
 | |
| public:
 | |
|     virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                            Context& context, CommandBuffer& res) const override {
 | |
|         auto input      = inputs[0];
 | |
|         auto output     = outputs[0];
 | |
|         auto inputDes   = TensorUtils::getDescribe(input);
 | |
|         auto outputDes  = TensorUtils::getDescribe(output);
 | |
|         auto inputSlice = inputDes->regions;
 | |
|         MNN_ASSERT(input->dimensions() >= 1);
 | |
|         MNN_ASSERT(output->dimensions() == input->dimensions());
 | |
|         auto originTensor = input;
 | |
|         int basicOffset   = 0;
 | |
|         int shape[MNN_MAX_TENSOR_DIM];
 | |
|         if (op->type() == OpType_Permute) {
 | |
|             auto shapeValue = op->main_as_Permute()->dims();
 | |
|             for (int i = 0; i < input->buffer().dimensions; ++i) {
 | |
|                 shape[i] = shapeValue->data()[i];
 | |
|             }
 | |
|         } else if (op->type() == OpType_Transpose) {
 | |
|             auto shapeValue = inputs[1]->host<int32_t>();
 | |
|             for (int i = 0; i < input->buffer().dimensions; ++i) {
 | |
|                 shape[i] = shapeValue[i];
 | |
|             }
 | |
|         } else {
 | |
|             MNN_ASSERT(false);
 | |
|         }
 | |
|         int inputShape[MNN_MAX_TENSOR_DIM];
 | |
|         int inputStrides[MNN_MAX_TENSOR_DIM];
 | |
|         int inputShapeSize = 0;
 | |
|         int preAxis = -2;
 | |
|         for (int i=0; i<input->buffer().dimensions; ++i) {
 | |
|             auto axis = shape[i];
 | |
|             auto len = input->length(axis);
 | |
|             if (1 == len) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (axis - preAxis == 1) {
 | |
|                 inputShape[inputShapeSize - 1] *= len;
 | |
|             } else {
 | |
|                 if (preAxis >= 0) {
 | |
|                     // Compute last stride
 | |
|                     int stride = 1;
 | |
|                     for (int v=preAxis+1; v < input->buffer().dimensions; ++v) {
 | |
|                         stride *= input->length(v);
 | |
|                     }
 | |
|                     inputStrides[inputShapeSize - 1] = stride;
 | |
|                 }
 | |
|                 inputShapeSize+=1;
 | |
|                 inputShape[inputShapeSize - 1] = len;
 | |
|             }
 | |
|             preAxis = shape[i];
 | |
|         }
 | |
|         if (preAxis >= 0) {
 | |
|             // Compute last stride
 | |
|             int stride = 1;
 | |
|             for (int v=preAxis+1; v < input->buffer().dimensions; ++v) {
 | |
|                 stride *= input->length(v);
 | |
|             }
 | |
|             inputStrides[inputShapeSize - 1] = stride;
 | |
|         }
 | |
|         if (0 == inputShapeSize) {
 | |
|             outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|             outputDes->regions = {TensorUtils::makeFullSlice(input)};
 | |
|             return true;
 | |
|         }
 | |
|         int outputStrides[MNN_MAX_TENSOR_DIM];
 | |
|         {
 | |
|             int stride = 1;
 | |
|             for (int i=inputShapeSize-1; i>=0; --i) {
 | |
|                 outputStrides[i] = stride;
 | |
|                 stride *= inputShape[i];
 | |
|             }
 | |
|         }
 | |
|         int basicStride = 1;
 | |
|         // Compute inside, outside, axis
 | |
|         int inside        = 1;
 | |
|         int insideStride  = 0;
 | |
|         int outside       = 1;
 | |
|         int outsideStride = 0;
 | |
|         int axis          = 1;
 | |
|         int axisStride    = 0;
 | |
|         int breakAxis     = -1;
 | |
|         int remainSize    = 1;
 | |
|         {
 | |
|             if (inputShapeSize >= 1) {
 | |
|                 inside       = inputShape[inputShapeSize-1];
 | |
|                 insideStride = inputStrides[inputShapeSize-1];
 | |
|             }
 | |
|             if (inputShapeSize >= 2) {
 | |
|                 axis       = inputShape[inputShapeSize-2];
 | |
|                 axisStride = inputStrides[inputShapeSize-2];
 | |
|             }
 | |
|             if (inputShapeSize >= 3) {
 | |
|                 outside       = inputShape[inputShapeSize-3];
 | |
|                 outsideStride = inputStrides[inputShapeSize-3];
 | |
|                 breakAxis     = inputShapeSize - 3;
 | |
|                 for (int i = 0; i < inputShapeSize - 3; ++i) {
 | |
|                     remainSize *= inputShape[i];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         outputDes->regions.resize(remainSize);
 | |
|         outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
 | |
|         int32_t mod[MNN_MAX_TENSOR_DIM];
 | |
|         for (int i = 0; i < breakAxis; ++i) {
 | |
|             int value = 1;
 | |
|             for (int j = i + 1; j < breakAxis; ++j) {
 | |
|                 value *= inputShape[j];
 | |
|             }
 | |
|             mod[i] = value;
 | |
|         }
 | |
|         for (int indice = 0; indice < remainSize; ++indice) {
 | |
|             int value       = indice;
 | |
|             int inputOffset = 0;
 | |
|             for (int i = 0; i < breakAxis; ++i) {
 | |
|                 auto coordinate = value / mod[i];
 | |
|                 inputOffset += coordinate * inputStrides[i];
 | |
|                 value = value % mod[i];
 | |
|             }
 | |
|             Tensor::InsideDescribe::Region& slice = outputDes->regions[indice];
 | |
|             slice.src.offset                      = inputOffset + basicOffset;
 | |
|             slice.src.stride[0]                   = outsideStride * basicStride;
 | |
|             slice.size[0]                         = outside;
 | |
|             slice.src.stride[1]                   = axisStride * basicStride;
 | |
|             slice.size[1]                         = axis;
 | |
|             slice.src.stride[2]                   = insideStride * basicStride;
 | |
|             slice.size[2]                         = inside;
 | |
|             slice.origin                          = originTensor;
 | |
|             slice.dst.offset                      = indice * outside * axis * inside;
 | |
|             slice.dst.stride[0]                   = axis * inside;
 | |
|             slice.dst.stride[1]                   = inside;
 | |
|             slice.dst.stride[2]                   = 1;
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| static void _create() {
 | |
|     std::shared_ptr<GeometryComputer> comp(new GeometryPermute);
 | |
|     GeometryComputer::registerGeometryComputer(comp, {OpType_Transpose, OpType_Permute});
 | |
| }
 | |
| 
 | |
| REGISTER_GEOMETRY(GeometryPermute, _create);
 | |
| }; // namespace MNN
 |