MNN/pymnn/pip_package/MNN/tools/mnn_fb/Convolution3D.py

83 lines
3.1 KiB
Python

# automatically generated by the FlatBuffers compiler, do not modify
# namespace: MNN
import flatbuffers
class Convolution3D(object):
__slots__ = ['_tab']
@classmethod
def GetRootAsConvolution3D(cls, buf, offset):
n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset)
x = Convolution3D()
x.Init(buf, n + offset)
return x
# Convolution3D
def Init(self, buf, pos):
self._tab = flatbuffers.table.Table(buf, pos)
# Convolution3D
def Common(self):
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
if o != 0:
x = self._tab.Indirect(o + self._tab.Pos)
from .Convolution3DCommon import Convolution3DCommon
obj = Convolution3DCommon()
obj.Init(self._tab.Bytes, x)
return obj
return None
# Convolution3D
def Weight(self, j):
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6))
if o != 0:
a = self._tab.Vector(o)
return self._tab.Get(flatbuffers.number_types.Float32Flags, a + flatbuffers.number_types.UOffsetTFlags.py_type(j * 4))
return 0
# Convolution3D
def WeightAsNumpy(self):
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6))
if o != 0:
return self._tab.GetVectorAsNumpy(flatbuffers.number_types.Float32Flags, o)
return 0
# Convolution3D
def WeightLength(self):
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6))
if o != 0:
return self._tab.VectorLen(o)
return 0
# Convolution3D
def Bias(self, j):
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8))
if o != 0:
a = self._tab.Vector(o)
return self._tab.Get(flatbuffers.number_types.Float32Flags, a + flatbuffers.number_types.UOffsetTFlags.py_type(j * 4))
return 0
# Convolution3D
def BiasAsNumpy(self):
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8))
if o != 0:
return self._tab.GetVectorAsNumpy(flatbuffers.number_types.Float32Flags, o)
return 0
# Convolution3D
def BiasLength(self):
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8))
if o != 0:
return self._tab.VectorLen(o)
return 0
def Convolution3DStart(builder): builder.StartObject(3)
def Convolution3DAddCommon(builder, common): builder.PrependUOffsetTRelativeSlot(0, flatbuffers.number_types.UOffsetTFlags.py_type(common), 0)
def Convolution3DAddWeight(builder, weight): builder.PrependUOffsetTRelativeSlot(1, flatbuffers.number_types.UOffsetTFlags.py_type(weight), 0)
def Convolution3DStartWeightVector(builder, numElems): return builder.StartVector(4, numElems, 4)
def Convolution3DAddBias(builder, bias): builder.PrependUOffsetTRelativeSlot(2, flatbuffers.number_types.UOffsetTFlags.py_type(bias), 0)
def Convolution3DStartBiasVector(builder, numElems): return builder.StartVector(4, numElems, 4)
def Convolution3DEnd(builder): return builder.EndObject()