mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			143 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			143 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
| # automatically generated by the FlatBuffers compiler, do not modify
 | |
| 
 | |
| # namespace: MNN
 | |
| 
 | |
| import flatbuffers
 | |
| 
 | |
| class RNNParam(object):
 | |
|     __slots__ = ['_tab']
 | |
| 
 | |
|     @classmethod
 | |
|     def GetRootAsRNNParam(cls, buf, offset):
 | |
|         n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset)
 | |
|         x = RNNParam()
 | |
|         x.Init(buf, n + offset)
 | |
|         return x
 | |
| 
 | |
|     # RNNParam
 | |
|     def Init(self, buf, pos):
 | |
|         self._tab = flatbuffers.table.Table(buf, pos)
 | |
| 
 | |
|     # RNNParam
 | |
|     def NumUnits(self):
 | |
|         o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
 | |
|         if o != 0:
 | |
|             return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos)
 | |
|         return 0
 | |
| 
 | |
|     # RNNParam
 | |
|     def IsBidirectionalRNN(self):
 | |
|         o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6))
 | |
|         if o != 0:
 | |
|             return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos))
 | |
|         return False
 | |
| 
 | |
|     # RNNParam
 | |
|     def KeepAllOutputs(self):
 | |
|         o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8))
 | |
|         if o != 0:
 | |
|             return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos))
 | |
|         return False
 | |
| 
 | |
|     # RNNParam
 | |
|     def FwGateWeight(self):
 | |
|         o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(10))
 | |
|         if o != 0:
 | |
|             x = self._tab.Indirect(o + self._tab.Pos)
 | |
|             from .Blob import Blob
 | |
|             obj = Blob()
 | |
|             obj.Init(self._tab.Bytes, x)
 | |
|             return obj
 | |
|         return None
 | |
| 
 | |
|     # RNNParam
 | |
|     def FwGateBias(self):
 | |
|         o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(12))
 | |
|         if o != 0:
 | |
|             x = self._tab.Indirect(o + self._tab.Pos)
 | |
|             from .Blob import Blob
 | |
|             obj = Blob()
 | |
|             obj.Init(self._tab.Bytes, x)
 | |
|             return obj
 | |
|         return None
 | |
| 
 | |
|     # RNNParam
 | |
|     def FwCandidateWeight(self):
 | |
|         o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(14))
 | |
|         if o != 0:
 | |
|             x = self._tab.Indirect(o + self._tab.Pos)
 | |
|             from .Blob import Blob
 | |
|             obj = Blob()
 | |
|             obj.Init(self._tab.Bytes, x)
 | |
|             return obj
 | |
|         return None
 | |
| 
 | |
|     # RNNParam
 | |
|     def FwCandidateBias(self):
 | |
|         o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(16))
 | |
|         if o != 0:
 | |
|             x = self._tab.Indirect(o + self._tab.Pos)
 | |
|             from .Blob import Blob
 | |
|             obj = Blob()
 | |
|             obj.Init(self._tab.Bytes, x)
 | |
|             return obj
 | |
|         return None
 | |
| 
 | |
|     # RNNParam
 | |
|     def BwGateWeight(self):
 | |
|         o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(18))
 | |
|         if o != 0:
 | |
|             x = self._tab.Indirect(o + self._tab.Pos)
 | |
|             from .Blob import Blob
 | |
|             obj = Blob()
 | |
|             obj.Init(self._tab.Bytes, x)
 | |
|             return obj
 | |
|         return None
 | |
| 
 | |
|     # RNNParam
 | |
|     def BwGateBias(self):
 | |
|         o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(20))
 | |
|         if o != 0:
 | |
|             x = self._tab.Indirect(o + self._tab.Pos)
 | |
|             from .Blob import Blob
 | |
|             obj = Blob()
 | |
|             obj.Init(self._tab.Bytes, x)
 | |
|             return obj
 | |
|         return None
 | |
| 
 | |
|     # RNNParam
 | |
|     def BwCandidateWeight(self):
 | |
|         o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22))
 | |
|         if o != 0:
 | |
|             x = self._tab.Indirect(o + self._tab.Pos)
 | |
|             from .Blob import Blob
 | |
|             obj = Blob()
 | |
|             obj.Init(self._tab.Bytes, x)
 | |
|             return obj
 | |
|         return None
 | |
| 
 | |
|     # RNNParam
 | |
|     def BwCandidateBias(self):
 | |
|         o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(24))
 | |
|         if o != 0:
 | |
|             x = self._tab.Indirect(o + self._tab.Pos)
 | |
|             from .Blob import Blob
 | |
|             obj = Blob()
 | |
|             obj.Init(self._tab.Bytes, x)
 | |
|             return obj
 | |
|         return None
 | |
| 
 | |
| def RNNParamStart(builder): builder.StartObject(11)
 | |
| def RNNParamAddNumUnits(builder, numUnits): builder.PrependInt32Slot(0, numUnits, 0)
 | |
| def RNNParamAddIsBidirectionalRNN(builder, isBidirectionalRNN): builder.PrependBoolSlot(1, isBidirectionalRNN, 0)
 | |
| def RNNParamAddKeepAllOutputs(builder, keepAllOutputs): builder.PrependBoolSlot(2, keepAllOutputs, 0)
 | |
| def RNNParamAddFwGateWeight(builder, fwGateWeight): builder.PrependUOffsetTRelativeSlot(3, flatbuffers.number_types.UOffsetTFlags.py_type(fwGateWeight), 0)
 | |
| def RNNParamAddFwGateBias(builder, fwGateBias): builder.PrependUOffsetTRelativeSlot(4, flatbuffers.number_types.UOffsetTFlags.py_type(fwGateBias), 0)
 | |
| def RNNParamAddFwCandidateWeight(builder, fwCandidateWeight): builder.PrependUOffsetTRelativeSlot(5, flatbuffers.number_types.UOffsetTFlags.py_type(fwCandidateWeight), 0)
 | |
| def RNNParamAddFwCandidateBias(builder, fwCandidateBias): builder.PrependUOffsetTRelativeSlot(6, flatbuffers.number_types.UOffsetTFlags.py_type(fwCandidateBias), 0)
 | |
| def RNNParamAddBwGateWeight(builder, bwGateWeight): builder.PrependUOffsetTRelativeSlot(7, flatbuffers.number_types.UOffsetTFlags.py_type(bwGateWeight), 0)
 | |
| def RNNParamAddBwGateBias(builder, bwGateBias): builder.PrependUOffsetTRelativeSlot(8, flatbuffers.number_types.UOffsetTFlags.py_type(bwGateBias), 0)
 | |
| def RNNParamAddBwCandidateWeight(builder, bwCandidateWeight): builder.PrependUOffsetTRelativeSlot(9, flatbuffers.number_types.UOffsetTFlags.py_type(bwCandidateWeight), 0)
 | |
| def RNNParamAddBwCandidateBias(builder, bwCandidateBias): builder.PrependUOffsetTRelativeSlot(10, flatbuffers.number_types.UOffsetTFlags.py_type(bwCandidateBias), 0)
 | |
| def RNNParamEnd(builder): return builder.EndObject()
 |