mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			126 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			126 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CommonCompute.hpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2021/07/23.
 | |
| //  Copyright © 2018 - 2021, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #ifndef CommonCompute_hpp
 | |
| #define CommonCompute_hpp
 | |
| #include <random>
 | |
| 
 | |
| namespace MNN {
 | |
| class MNN_PUBLIC CommonCompute {
 | |
| public:
 | |
|     // sparse common functions
 | |
|     template <typename ElementType>
 | |
|     static void statisticWeightSparsity(size_t& weightNNZElement, size_t& weightBlockNumber, const ElementType* data, size_t h, size_t l,  int sparseBlockOC) {
 | |
| 
 | |
|         size_t nnzBlock = 0;
 | |
|         size_t nnzTail = 0;
 | |
|         int i = 0;
 | |
|         for (; i + sparseBlockOC <= h; i += sparseBlockOC) {
 | |
|             for(int j = 0; j < l; j += 1) {
 | |
|                 nnzBlock += !checkAllZeros(data, l, sparseBlockOC, 1);
 | |
|                 data++;
 | |
|             }
 | |
|             data += l * (sparseBlockOC - 1);
 | |
|         }
 | |
|         for (; i < h; i++) {
 | |
|             for(int j = 0; j < l; j++) {
 | |
|                 nnzTail += (*data != 0);
 | |
|                 data++;
 | |
|             }
 | |
|         }
 | |
|         weightNNZElement = nnzBlock * sparseBlockOC + nnzTail;
 | |
|         weightBlockNumber = nnzBlock + nnzTail;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     template <typename ElementType>
 | |
|     static void fillRandValueAsSparsity(size_t& weightNNZElement, size_t& weightBlockNumber, ElementType* data, int oc, int reduceDimLength, float sparsity, int sparseBlockOC, ElementType minValue = 0, ElementType maxValue = 1) {
 | |
|         unsigned int seed = 1000;
 | |
|         std::mt19937 rng(seed);
 | |
|         std::uniform_real_distribution<float> uniform_dist(0, 1);
 | |
|         std::uniform_real_distribution<ElementType> uniform_value(minValue, maxValue);
 | |
|         float* data_ptr = data;
 | |
| 
 | |
|         size_t nnzBlock = 0;
 | |
|         size_t nnzTail = 0;
 | |
|         int ocEven = (oc / sparseBlockOC) * sparseBlockOC;
 | |
| 
 | |
| 
 | |
|         size_t ioc = 0;
 | |
|         for (; ioc < ocEven; ioc += sparseBlockOC) {
 | |
|         for (size_t i = 0; i < reduceDimLength; i++) {
 | |
|             bool isZero = uniform_dist(rng) <= sparsity;
 | |
|             for (int iblock = 0; iblock < sparseBlockOC; iblock++) {
 | |
|                 *(data + iblock * reduceDimLength) = isZero ? 0.f : uniform_value(rng);
 | |
|             }
 | |
|             data++;
 | |
|             nnzBlock += !isZero;
 | |
|             }
 | |
|             data += (sparseBlockOC - 1) * reduceDimLength;
 | |
|         }
 | |
|         for (; ioc < oc; ioc++) {
 | |
|             for (size_t i = 0; i < reduceDimLength; i++) {
 | |
|                 bool isZero = uniform_dist(rng) <= sparsity;
 | |
|                 *data++ = isZero ? 0.f : uniform_value(rng);
 | |
|                 nnzTail += !isZero;
 | |
|             }
 | |
|         }
 | |
|         weightNNZElement = nnzBlock * sparseBlockOC + nnzTail;
 | |
|         weightBlockNumber = nnzBlock + nnzTail;
 | |
|     }
 | |
|     template <typename ElementType>
 | |
|     bool static checkAllZeros(const ElementType * source, size_t rowDimLength, int blockRow, int blockCol) {
 | |
|         for (int i = 0; i < blockRow; i++) {
 | |
|             for (int j = 0; j < blockCol; j++) {
 | |
|                 if (*(source + i * rowDimLength + j) != 0) {
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     static bool compressFloatWeightToSparse(MNN::OpT* op) {
 | |
|         auto opType = op->type;
 | |
|         auto param = op->main.AsConvolution2D();
 | |
|         if (param->sparseParameter.get() == nullptr) {
 | |
|             return false;
 | |
|         }
 | |
|         // Encode for sparse float weight
 | |
|         size_t weightSize = param->weight.size();
 | |
| 
 | |
|         if (weightSize > std::numeric_limits<uint32_t>().max()) {
 | |
|             MNN_ERROR("The weightSize exceed uint32_t, can't compress the sparse weight\n");
 | |
|             return false;
 | |
|         }
 | |
|         param->quanParameter.reset(new IDSTQuanT);
 | |
|         size_t validSize = 0;
 | |
|         std::vector<uint32_t> indexes;
 | |
|         std::vector<float> newWeights;
 | |
| 
 | |
|         for (size_t i=0; i<weightSize; ++i) {
 | |
|             if (param->weight[i] != 0.0f) {
 | |
|                 indexes.emplace_back(i);
 | |
|                 newWeights.emplace_back(param->weight[i]);
 | |
|             }
 | |
|         }
 | |
|         // If empty, Add Single weight to avoid error, runtime can't extract full sparse convolution
 | |
|         if (indexes.empty()) {
 | |
|             indexes.emplace_back(0);
 | |
|             newWeights.emplace_back(0.0f);
 | |
|         }
 | |
|         param->weight.clear();
 | |
|         param->quanParameter->alpha = std::move(newWeights);
 | |
|         param->quanParameter->weightSize = (uint32_t)weightSize;
 | |
|         param->quanParameter->index = std::move(indexes);
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| } // namespace MNN
 | |
| 
 | |
| #endif
 |