mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			101 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			101 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  CPUFloatToInt8.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/5/22.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "backend/cpu/CPUFloatToInt8.hpp"
 | 
						|
#include "backend/cpu/CPUBackend.hpp"
 | 
						|
#include "core/Concurrency.h"
 | 
						|
#include "backend/cpu/compute/Int8FunctionsOpt.h"
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/TensorUtils.hpp"
 | 
						|
#include "compute/CommonOptFunction.h"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
 | 
						|
CPUFloatToInt8::CPUFloatToInt8(Backend* backend, const MNN::Op* param) : Execution(backend) {
 | 
						|
    auto scale         = param->main_as_QuantizedFloatParam();
 | 
						|
    const int scaleLen = scale->tensorScale()->size();
 | 
						|
    mClipBits = scale->nbits();
 | 
						|
    auto pack = static_cast<CPUBackend*>(backend)->functions()->pack;
 | 
						|
    mScales.reset(Tensor::createDevice<float>({UP_DIV(scaleLen, pack) * pack}));
 | 
						|
    mValid = backend->onAcquireBuffer(mScales.get(), Backend::STATIC);
 | 
						|
    if (!mValid) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (1 == scaleLen) {
 | 
						|
        mSingle = true;
 | 
						|
        for (int i = 0; i < pack; ++i) {
 | 
						|
            mScales->host<float>()[i] = scale->tensorScale()->data()[0];
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        memset(mScales->host<float>(), 0, UP_DIV(scaleLen, pack) * pack * sizeof(float));
 | 
						|
        memcpy(mScales->host<float>(), scale->tensorScale()->data(), scaleLen * sizeof(float));
 | 
						|
    }
 | 
						|
 | 
						|
    mZeroPoint = scale->zeroPoint();
 | 
						|
    mClampMin = scale->clampMin();
 | 
						|
    mClampMax = scale->clampMax();
 | 
						|
}
 | 
						|
CPUFloatToInt8::~CPUFloatToInt8() {
 | 
						|
    backend()->onReleaseBuffer(mScales.get(), Backend::STATIC);
 | 
						|
}
 | 
						|
 | 
						|
ErrorCode CPUFloatToInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
ErrorCode CPUFloatToInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | 
						|
    const auto input = inputs[0];
 | 
						|
    auto output      = outputs[0];
 | 
						|
    auto pack = static_cast<CPUBackend*>(backend())->functions()->pack;
 | 
						|
    auto int8F = static_cast<CPUBackend*>(backend())->int8Functions();
 | 
						|
 | 
						|
    const auto inputDataPtr = input->host<float>();
 | 
						|
    auto outputDataPtr      = output->host<int8_t>();
 | 
						|
    const auto scaleDataPtr = mScales->host<float>();
 | 
						|
    const int channels      = input->channel();
 | 
						|
    int icDiv4        = UP_DIV(channels, pack);
 | 
						|
    const int batch         = input->batch();
 | 
						|
    const int batchStride   = input->stride(0);
 | 
						|
    int oc4Stride           = 1;
 | 
						|
    for (int i = 2; i < input->dimensions(); ++i) {
 | 
						|
        oc4Stride *= input->length(i);
 | 
						|
    }
 | 
						|
    if (mSingle) {
 | 
						|
        oc4Stride = icDiv4 * oc4Stride;
 | 
						|
        icDiv4 = 1;
 | 
						|
    }
 | 
						|
    int total = batch * icDiv4;
 | 
						|
    auto numberThread       = std::min(icDiv4, ((CPUBackend*)backend())->threadNumber());
 | 
						|
 | 
						|
    MNN_CONCURRENCY_BEGIN(tId, total) {
 | 
						|
        int bIndex = tId / icDiv4;
 | 
						|
        int z = tId % icDiv4;
 | 
						|
        const auto srcChannelPtr   = inputDataPtr + tId * oc4Stride * pack;
 | 
						|
        const auto scaleChannelPtr = scaleDataPtr + z * pack;
 | 
						|
        auto dstChannlePtr         = outputDataPtr + tId * oc4Stride * pack;
 | 
						|
        int8F->MNNFloat2Int8(srcChannelPtr, dstChannlePtr, oc4Stride, scaleChannelPtr, mClampMin, mClampMax, mZeroPoint);
 | 
						|
    }
 | 
						|
    MNN_CONCURRENCY_END();
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
class CPUFloatToInt8Creator : public CPUBackend::Creator {
 | 
						|
public:
 | 
						|
    virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | 
						|
                                const MNN::Op* op, Backend* backend) const override {
 | 
						|
        if (nullptr == op->main_as_QuantizedFloatParam()) {
 | 
						|
            return new CastWrapExecution(backend, DataType_DT_INT8);
 | 
						|
        }
 | 
						|
        return new CPUFloatToInt8(backend, op);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_CPU_OP_CREATOR(CPUFloatToInt8Creator, OpType_FloatToInt8);
 | 
						|
 | 
						|
} // namespace MNN
 |