mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			240 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			240 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  CPUSoftmax.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2018/07/16.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include "backend/cpu/CPUSoftmax.hpp"
 | 
						|
#include "backend/cpu/CPUSoftMaxInt8.hpp"
 | 
						|
#include "backend/cpu/CPUBackend.hpp"
 | 
						|
#include "backend/cpu/compute/CommonOptFunction.h"
 | 
						|
#include "core/Concurrency.h"
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/TensorUtils.hpp"
 | 
						|
#include "CPUTensorConvert.hpp"
 | 
						|
#ifdef MNN_USE_NEON
 | 
						|
#include <arm_neon.h>
 | 
						|
#endif
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
 | 
						|
int CPUSoftmax::_softmax1(const float *srcData, float *dstData, int outside, int channel, int threadNum) {
 | 
						|
    MNN_CONCURRENCY_BEGIN(tId, threadNum)
 | 
						|
    {
 | 
						|
        const float *srcY = srcData + tId * channel;
 | 
						|
        float *dstY       = dstData + tId * channel;
 | 
						|
        for (int y = (int)tId; y < outside; y += threadNum, srcY += channel * threadNum, dstY += channel * threadNum) {
 | 
						|
            MNNSoftmax(dstY, srcY, channel);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    MNN_CONCURRENCY_END();
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
int CPUSoftmax::_softmaxCommon(const float *srcData, float *dstData, int inside, int outside, int channel,
 | 
						|
                               float *maxValue, float *sumValue, int threadNum) {
 | 
						|
    if (inside == 1)
 | 
						|
        return _softmax1(srcData, dstData, outside, channel, threadNum);
 | 
						|
 | 
						|
    const int stepY = inside * channel;
 | 
						|
    MNN_CONCURRENCY_BEGIN(tId, threadNum);
 | 
						|
    {
 | 
						|
        const float *srcY  = srcData + tId * stepY;
 | 
						|
        float *dstY        = dstData + tId * stepY;
 | 
						|
        float *maxValueSub = maxValue + tId * inside;
 | 
						|
 | 
						|
        for (int y = (int)tId; y < outside; y += threadNum, srcY += stepY * threadNum, dstY += stepY * threadNum) {
 | 
						|
            memcpy(maxValueSub, srcY, sizeof(float) * inside);
 | 
						|
            const float *src = srcY + inside;
 | 
						|
            for (int c = 1; c < channel; ++c, src += inside) {
 | 
						|
                for (int x = 0; x < inside; ++x) {
 | 
						|
                    if (src[x] > maxValueSub[x])
 | 
						|
                        maxValueSub[x] = src[x];
 | 
						|
                }
 | 
						|
            }
 | 
						|
            src        = srcY;
 | 
						|
            float *dst = dstY;
 | 
						|
            for (int c = 0; c < channel; ++c, src += inside, dst += inside) {
 | 
						|
                for (int x = 0; x < inside; ++x) {
 | 
						|
                    dst[x] = -src[x] + maxValueSub[x];
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    MNN_CONCURRENCY_END();
 | 
						|
 | 
						|
    auto totalSize = channel * inside * outside;
 | 
						|
    //Exp
 | 
						|
    auto schedule = ((CPUBackend*)backend())->multiThreadDivide(totalSize);
 | 
						|
    int sizeDivide = schedule.first;
 | 
						|
    int scheduleNumber = schedule.second;
 | 
						|
 | 
						|
    MNN_CONCURRENCY_BEGIN(tId, scheduleNumber) {
 | 
						|
        int start = sizeDivide * (int)tId;
 | 
						|
        int realSize = sizeDivide;
 | 
						|
        if (tId == scheduleNumber -1 ) {
 | 
						|
            realSize = totalSize - start;
 | 
						|
        }
 | 
						|
        if (realSize > 0) {
 | 
						|
            float ab[2] = {
 | 
						|
                -1.0f,
 | 
						|
                0.0f
 | 
						|
            };
 | 
						|
            MNNExp(dstData + start, dstData + start, ab, realSize);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    MNN_CONCURRENCY_END();
 | 
						|
    
 | 
						|
    MNN_CONCURRENCY_BEGIN(tId, threadNum);
 | 
						|
    {
 | 
						|
        const float *srcY  = srcData + tId * stepY;
 | 
						|
        float *dstY        = dstData + tId * stepY;
 | 
						|
        float *sumValueSub = sumValue + tId * inside;
 | 
						|
        for (int y = (int)tId; y < outside; y += threadNum, srcY += stepY * threadNum, dstY += stepY * threadNum) {
 | 
						|
            memset(sumValueSub, 0, sizeof(float) * inside);
 | 
						|
            float *dst = dstY;
 | 
						|
            for (int c = 0; c < channel; ++c, dst += inside) {
 | 
						|
                for (int x = 0; x < inside; ++x) {
 | 
						|
                    sumValueSub[x] += dst[x];
 | 
						|
                }
 | 
						|
            }
 | 
						|
            dst = dstY;
 | 
						|
            for (int c = 0; c < channel; ++c, dst += inside) {
 | 
						|
                for (int x = 0; x < inside; ++x) {
 | 
						|
                    dst[x] /= sumValueSub[x];
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    MNN_CONCURRENCY_END();
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
ErrorCode CPUSoftmax::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | 
						|
    auto input           = inputs[0];
 | 
						|
    const int dimensions = input->buffer().dimensions;
 | 
						|
    int axis = mAxis;
 | 
						|
    if (axis < 0) {
 | 
						|
        axis += dimensions;
 | 
						|
    }
 | 
						|
 | 
						|
    const auto layout = TensorUtils::getDescribe(input)->dimensionFormat;
 | 
						|
    mNeedUnpackC4     = layout == MNN_DATA_FORMAT_NC4HW4;
 | 
						|
 | 
						|
    if (mNeedUnpackC4) {
 | 
						|
        int totalSize = 1;
 | 
						|
        for (int i = 1; i < dimensions; ++i) {
 | 
						|
            totalSize *= input->length(i);
 | 
						|
        }
 | 
						|
        mStorage.buffer().dim[0].extent = input->length(0);
 | 
						|
        mStorage.buffer().dim[1].extent = totalSize;
 | 
						|
        TensorUtils::getDescribe(&mStorage)->dimensionFormat = MNN_DATA_FORMAT_NHWC;
 | 
						|
        mStorage.buffer().dimensions    = 2;
 | 
						|
        mStorage.buffer().type          = input->getType();
 | 
						|
        backend()->onAcquireBuffer(&mStorage, Backend::DYNAMIC);
 | 
						|
    }
 | 
						|
 | 
						|
    int inside = 1;
 | 
						|
    int dims   = input->buffer().dimensions;
 | 
						|
    for (int i = axis + 1; i < dims; ++i) {
 | 
						|
        inside *= input->length(i);
 | 
						|
    }
 | 
						|
 | 
						|
    if (inside != 1) { // not run _softmax1, we need maxValue Tensor and sumValue Tensor.
 | 
						|
        int threadNum = ((CPUBackend *)backend())->threadNumber();
 | 
						|
 | 
						|
        mMaxValue.buffer().dim[0].extent = inside * threadNum;
 | 
						|
        mMaxValue.buffer().dimensions    = 1;
 | 
						|
        mMaxValue.setType(DataType_DT_FLOAT);
 | 
						|
        backend()->onAcquireBuffer(&mMaxValue, Backend::DYNAMIC);
 | 
						|
 | 
						|
        mSumValue.buffer().dim[0].extent = inside * threadNum;
 | 
						|
        mSumValue.buffer().dimensions    = 1;
 | 
						|
        mSumValue.setType(DataType_DT_FLOAT);
 | 
						|
        backend()->onAcquireBuffer(&mSumValue, Backend::DYNAMIC);
 | 
						|
 | 
						|
        backend()->onReleaseBuffer(&mMaxValue, Backend::DYNAMIC);
 | 
						|
        backend()->onReleaseBuffer(&mSumValue, Backend::DYNAMIC);
 | 
						|
    }
 | 
						|
 | 
						|
    if (mNeedUnpackC4) {
 | 
						|
        backend()->onReleaseBuffer(&mStorage, Backend::DYNAMIC);
 | 
						|
    }
 | 
						|
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
ErrorCode CPUSoftmax::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | 
						|
    MNN_ASSERT(1 == inputs.size());
 | 
						|
    MNN_ASSERT(1 == outputs.size());
 | 
						|
    auto inputTensor        = inputs[0];
 | 
						|
    auto outputTensor       = outputs[0];
 | 
						|
    const auto inputDataPtr = inputTensor->host<float>();
 | 
						|
    auto outputDataPtr      = outputTensor->host<float>();
 | 
						|
    const int batch         = inputTensor->batch();
 | 
						|
    const auto dims         = inputTensor->buffer().dimensions;
 | 
						|
    int axis = mAxis;
 | 
						|
    if (axis < 0) {
 | 
						|
        axis += inputTensor->dimensions();
 | 
						|
    }
 | 
						|
 | 
						|
    float *tempData = nullptr;
 | 
						|
    if (mNeedUnpackC4) {
 | 
						|
        tempData = mStorage.host<float>();
 | 
						|
    }
 | 
						|
 | 
						|
    int areaInput = 1;
 | 
						|
    for (int i = 2; i < dims; ++i) {
 | 
						|
        areaInput *= inputTensor->length(i);
 | 
						|
    }
 | 
						|
    int inside  = 1;
 | 
						|
    int outside = 1;
 | 
						|
    int channel = 1;
 | 
						|
    for (int i = 0; i < axis; ++i) {
 | 
						|
        outside *= inputTensor->length(i);
 | 
						|
    }
 | 
						|
    channel = inputTensor->length(axis);
 | 
						|
    for (int i = axis + 1; i < dims; ++i) {
 | 
						|
        inside *= inputTensor->length(i);
 | 
						|
    }
 | 
						|
 | 
						|
    int threadNum = ((CPUBackend *)backend())->threadNumber();
 | 
						|
    if (!mNeedUnpackC4) {
 | 
						|
        _softmaxCommon(inputDataPtr, outputDataPtr, inside, outside, channel, mMaxValue.host<float>(),
 | 
						|
                   mSumValue.host<float>(), threadNum);
 | 
						|
        return NO_ERROR;
 | 
						|
    }
 | 
						|
    auto functions = static_cast<CPUBackend*>(backend())->functions();
 | 
						|
    CPUTensorConverter::convert(inputDataPtr, outputDataPtr, MNN_DATA_FORMAT_NC4HW4, MNN_DATA_FORMAT_NCHW, batch, areaInput, inputTensor->channel(), functions->bytes, functions);
 | 
						|
    _softmaxCommon(outputDataPtr, tempData, inside, outside, channel, mMaxValue.host<float>(), mSumValue.host<float>(), threadNum);
 | 
						|
    CPUTensorConverter::convert(tempData, outputDataPtr, MNN_DATA_FORMAT_NCHW, MNN_DATA_FORMAT_NC4HW4, batch, areaInput, inputTensor->channel(), functions->bytes, functions);
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
CPUSoftmax::CPUSoftmax(Backend *b, int axis) : MNN::Execution(b), mAxis(axis), mStorage(2), mNeedUnpackC4(false) {
 | 
						|
    // nothing to do
 | 
						|
}
 | 
						|
 | 
						|
Execution* CPUSoftmax::create(const MNN::Op *op, Backend *backend) {
 | 
						|
    auto axis = op->main_as_Axis()->axis();
 | 
						|
    return new CPUSoftmax(backend, axis);
 | 
						|
}
 | 
						|
 | 
						|
class CPUSoftmaxCreator : public CPUBackend::Creator {
 | 
						|
public:
 | 
						|
    virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | 
						|
                                const MNN::Op *op, Backend *backend) const override {
 | 
						|
        if (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) {
 | 
						|
            return CPUSoftmaxInt8::create(op, backend);
 | 
						|
        } else {
 | 
						|
            return CPUSoftmax::create(op, backend);
 | 
						|
        }
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_CPU_OP_CREATOR(CPUSoftmaxCreator, OpType_Softmax);
 | 
						|
 | 
						|
} // namespace MNN
 |