MNN/source/backend/opencl/execution/image/ReductionExecution.cpp

237 lines
8.4 KiB
C++

//
// ReductionExecution.cpp
// MNN
//
// Created by MNN on 2019/10/25.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/ReductionExecution.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
namespace MNN {
namespace OpenCL {
ReductionExecution::ReductionExecution(const MNN::Op* op, Backend* backend) : CommonExecution(backend, op) {
#ifdef LOG_VERBOSE
MNN_PRINT("start ReductionExecution init !\n");
#endif
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
auto reduct = op->main_as_ReductionParam();
if (nullptr != reduct->dim()) {
for (int i = 0; i < reduct->dim()->size(); ++i) {
mAxis.push_back(reduct->dim()->data()[i]);
}
}
switch (op->main_as_ReductionParam()->operation()) {
case ReductionType_MEAN:
mReductType = 0;
break;
case ReductionType_MAXIMUM:
mReductType = 1;
break;
case ReductionType_MINIMUM:
mReductType = 2;
break;
case ReductionType_PROD:
mReductType = 3;
break;
case ReductionType_SUM:
mReductType = 4;
break;
default:
MNN_ASSERT(false);
break;
}
#ifdef LOG_VERBOSE
MNN_PRINT("end ReductionExecution init !\n");
#endif
}
ErrorCode ReductionExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(mAxis.size() == 1);
MNN_ASSERT(mAxis[0] == 1);
auto runtime = mOpenCLBackend->getOpenCLRuntime();
startRecord(runtime, mRecording);
auto input = inputs[0];
auto output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
//N=outside H=axis W=inside C=1
MNN_ASSERT(inputShape[3] == 1);
if(inputShape[1] >= 256) {
mUseLocal = true;
}
if(!mUseLocal) {
mGlobalWorkSize = {static_cast<uint32_t>(inputShape[0]), static_cast<uint32_t>(inputShape[2])};
mLocalWorkSize = {1, 1, 1};
switch (mReductType) {
case 0:
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_mean", {});
break;
case 1:
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_max", {});
break;
case 2:
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_min", {});
break;
case 3:
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_mul", {});
break;
case 4:
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_sum", {});
break;
default:
MNN_ASSERT(false);
break;
}
} else { //useLocal
uint32_t global_x = 8;
int size = inputShape[1];
if (size >= 1024) {
global_x = 256;
} else if(size >= 512) {
global_x = 128;
} else if (size >= 256) {
global_x = 64;
} else if (size >= 128) {
global_x = 32;
} else if (size >= 64) {
global_x = 16;
} else if (size >= 32) {
global_x = 8;
}
mGlobalWorkSize = {global_x, static_cast<uint32_t>(inputShape[0]), static_cast<uint32_t>(inputShape[2])};
mLocalWorkSize = {global_x, 1, 1 };
switch (mReductType) {
case 0:
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_mean_local", {});
break;
case 1:
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_max_local", {});
break;
case 2:
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_min_local", {});
break;
case 3:
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_mul_local", {});
break;
case 4:
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_sum_local", {});
break;
default:
MNN_ASSERT(false);
break;
}
}
//printf("reduce axis:%d , %d %d %d %d, useLocal:%d\n", mAxis[0], inputShape[0], inputShape[1], inputShape[2], inputShape[3], mUseLocal);
mUnits.resize(1);
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
if(mUseLocal) {
ret |= mReduct1DKernel.setArg(idx++, mGlobalWorkSize[1]);
ret |= mReduct1DKernel.setArg(idx++, mGlobalWorkSize[2]);
} else {
ret |= mReduct1DKernel.setArg(idx++, mGlobalWorkSize[0]);
ret |= mReduct1DKernel.setArg(idx++, mGlobalWorkSize[1]);
}
ret |= mReduct1DKernel.setArg(idx++, openCLImage(input));
ret |= mReduct1DKernel.setArg(idx++, openCLImage(output));
ret |= mReduct1DKernel.setArg(idx++, static_cast<int32_t>(inputShape[0]));
ret |= mReduct1DKernel.setArg(idx++, static_cast<int32_t>(inputShape[1]));
ret |= mReduct1DKernel.setArg(idx++, static_cast<int32_t>(inputShape[2]));
ret |= mReduct1DKernel.setArg(idx++, static_cast<int32_t>(inputShape[3]));
MNN_CHECK_CL_SUCCESS(ret, "setArg ReductionExecution");
if(mUseLocal){
recordKernel3d(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
}else{
recordKernel2d(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
}
endRecord(runtime, mRecording);
return NO_ERROR;
}
ErrorCode ReductionExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start ReductionExecution onExecute !\n");
#endif
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
if(mUseLocal) {
run3DKernelDefault(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
} else {
runKernel2D(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
}
int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
MNN_PRINT("kernel cost:%d us Reduct1D\n",costTime);
#else
if(mOpenCLBackend->getOpenCLRuntime()->isUseRecordQueue()){
mOpenCLBackend->getOpenCLRuntime()->getRecordings()->emplace_back(mRecording);
#ifdef LOG_VERBOSE
MNN_PRINT("End ReductionExecution onExecute... \n");
#endif
return NO_ERROR;
}
if(mUseLocal) {
run3DKernelDefault(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime());
} else {
runKernel2D(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime());
}
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("end ReductionExecution onExecute !\n");
#endif
return NO_ERROR;
}
class ReductionCreator : public OpenCLBackend::Creator {
public:
virtual ~ReductionCreator() = default;
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
if (inputs[0]->getDimensionType() == Tensor::TENSORFLOW) {
auto openCLBackend = static_cast<OpenCLBackend *>(backend);
auto reduct = op->main_as_ReductionParam();
if (nullptr == reduct->dim()) {
return NULL;
}
if(reduct->dim()->size() != 1) {
return NULL;
}
switch (op->main_as_ReductionParam()->operation()) {
case ReductionType_MEAN:
break;
case ReductionType_MAXIMUM:
break;
case ReductionType_MINIMUM:
break;
case ReductionType_PROD:
break;
case ReductionType_SUM:
break;
default:
return NULL;
break;
}
return new ReductionExecution(op, backend);
}
return NULL;
}
};
OpenCLCreatorRegister<ReductionCreator> __reduction_op(OpType_Reduction, IMAGE);
} // namespace OpenCL
} // namespace MNN