MNN/source/backend/opencl/execution/buffer/ReductionBufExecution.cpp

171 lines
5.6 KiB
C++

//
// ReductionBufExecution.cpp
// MNN
//
// Created by MNN on 2019/10/25.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/ReductionBufExecution.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
namespace MNN {
namespace OpenCL {
ReductionBufExecution::ReductionBufExecution(const MNN::Op* op, Backend* backend) : CommonExecution(backend, op) {
#ifdef LOG_VERBOSE
MNN_PRINT("start ReductionBufExecution init !\n");
#endif
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
auto reduct = op->main_as_ReductionParam();
if (nullptr != reduct->dim()) {
for (int i = 0; i < reduct->dim()->size(); ++i) {
mAxis.push_back(reduct->dim()->data()[i]);
}
}
switch (op->main_as_ReductionParam()->operation()) {
case ReductionType_MEAN:
mReductType = 0;
break;
case ReductionType_MAXIMUM:
mReductType = 1;
break;
case ReductionType_MINIMUM:
mReductType = 2;
break;
case ReductionType_PROD:
mReductType = 3;
break;
case ReductionType_SUM:
mReductType = 4;
break;
default:
MNN_ASSERT(false);
break;
}
#ifdef LOG_VERBOSE
MNN_PRINT("end ReductionBufExecution init !\n");
#endif
}
ErrorCode ReductionBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(mAxis.size() == 1);
MNN_ASSERT(mAxis[0] == 1);
auto runtime = mOpenCLBackend->getOpenCLRuntime();
auto input = inputs[0];
auto output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
//N=outside H=axis W=inside C=1
MNN_ASSERT(inputShape[3] == 1);
mGlobalWorkSize = {static_cast<uint32_t>(inputShape[0]), static_cast<uint32_t>(inputShape[2])};
mLocalWorkSize = {1, 1, 1};
std::set<std::string> buildOption;
switch (mReductType) {
case 0:
buildOption.emplace("-DOPERATE(a,b)=(a+b)");
buildOption.emplace("-DGET_AVG");
break;
case 1:
buildOption.emplace("-DOPERATE(a,b)=max(a,b)");
break;
case 2:
buildOption.emplace("-DOPERATE(a,b)=min(a,b)");
break;
case 3:
buildOption.emplace("-DOPERATE(a,b)=(a*b)");
break;
case 4:
buildOption.emplace("-DOPERATE(a,b)=(a+b)");
break;
default:
MNN_ASSERT(false);
break;
}
mReduct1DKernel = runtime->buildKernel("reduction_buf", "reduct_buf", buildOption);
//printf("reduce axis:%d , %d %d %d %d, useLocal:%d\n", mAxis[0], inputShape[0], inputShape[1], inputShape[2], inputShape[3], mUseLocal);
mUnits.resize(1);
uint32_t idx = 0;
mReduct1DKernel.setArg(idx++, mGlobalWorkSize[0]);
mReduct1DKernel.setArg(idx++, mGlobalWorkSize[1]);
mReduct1DKernel.setArg(idx++, openCLBuffer(input));
mReduct1DKernel.setArg(idx++, openCLBuffer(output));
mReduct1DKernel.setArg(idx++, static_cast<int32_t>(inputShape[0]));
mReduct1DKernel.setArg(idx++, static_cast<int32_t>(inputShape[1]));
mReduct1DKernel.setArg(idx++, static_cast<int32_t>(inputShape[2]));
mReduct1DKernel.setArg(idx++, static_cast<int32_t>(inputShape[3]));
return NO_ERROR;
}
ErrorCode ReductionBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start ReductionBufExecution onExecute !\n");
#endif
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
runKernel2D(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
MNN_PRINT("kernel cost:%d us Reduct1D\n",costTime);
#else
runKernel2D(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime());
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("end ReductionBufExecution onExecute !\n");
#endif
return NO_ERROR;
}
class ReductionBufCreator : public OpenCLBackend::Creator {
public:
virtual ~ReductionBufCreator() = default;
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
if (inputs[0]->getDimensionType() == Tensor::TENSORFLOW) {
auto openCLBackend = static_cast<OpenCLBackend *>(backend);
auto reduct = op->main_as_ReductionParam();
if (nullptr == reduct->dim()) {
return NULL;
}
if(reduct->dim()->size() != 1) {
return NULL;
}
switch (op->main_as_ReductionParam()->operation()) {
case ReductionType_MEAN:
break;
case ReductionType_MAXIMUM:
break;
case ReductionType_MINIMUM:
break;
case ReductionType_PROD:
break;
case ReductionType_SUM:
break;
default:
return NULL;
break;
}
return new ReductionBufExecution(op, backend);
}
return NULL;
}
};
OpenCLCreatorRegister<ReductionBufCreator> __reductionBuf_op(OpType_Reduction, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */