mirror of https://github.com/alibaba/MNN.git
221 lines
7.6 KiB
C++
221 lines
7.6 KiB
C++
//
|
|
// ReductionExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/10/25.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/opencl/execution/image/ReductionExecution.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
ReductionExecution::ReductionExecution(const MNN::Op* op, Backend* backend) : CommonExecution(backend, op) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("start ReductionExecution init !\n");
|
|
#endif
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
auto reduct = op->main_as_ReductionParam();
|
|
if (nullptr != reduct->dim()) {
|
|
for (int i = 0; i < reduct->dim()->size(); ++i) {
|
|
mAxis.push_back(reduct->dim()->data()[i]);
|
|
}
|
|
}
|
|
switch (op->main_as_ReductionParam()->operation()) {
|
|
case ReductionType_MEAN:
|
|
mReductType = 0;
|
|
break;
|
|
case ReductionType_MAXIMUM:
|
|
mReductType = 1;
|
|
break;
|
|
case ReductionType_MINIMUM:
|
|
mReductType = 2;
|
|
break;
|
|
case ReductionType_PROD:
|
|
mReductType = 3;
|
|
break;
|
|
case ReductionType_SUM:
|
|
mReductType = 4;
|
|
break;
|
|
default:
|
|
MNN_ASSERT(false);
|
|
break;
|
|
}
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end ReductionExecution init !\n");
|
|
#endif
|
|
}
|
|
|
|
ErrorCode ReductionExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
MNN_ASSERT(mAxis.size() == 1);
|
|
MNN_ASSERT(mAxis[0] == 1);
|
|
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
std::vector<int> inputShape = tensorShapeFormat(input);
|
|
//N=outside H=axis W=inside C=1
|
|
MNN_ASSERT(inputShape[3] == 1);
|
|
if(inputShape[1] >= 256) {
|
|
mUseLocal = true;
|
|
}
|
|
if(!mUseLocal) {
|
|
mGlobalWorkSize = {static_cast<uint32_t>(inputShape[0]), static_cast<uint32_t>(inputShape[2])};
|
|
mLocalWorkSize = {1, 1, 1};
|
|
|
|
switch (mReductType) {
|
|
case 0:
|
|
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_mean", {});
|
|
break;
|
|
case 1:
|
|
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_max", {});
|
|
break;
|
|
case 2:
|
|
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_min", {});
|
|
break;
|
|
case 3:
|
|
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_mul", {});
|
|
break;
|
|
case 4:
|
|
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_sum", {});
|
|
break;
|
|
default:
|
|
MNN_ASSERT(false);
|
|
break;
|
|
}
|
|
} else { //useLocal
|
|
uint32_t global_x = 8;
|
|
int size = inputShape[1];
|
|
if (size >= 1024) {
|
|
global_x = 256;
|
|
} else if(size >= 512) {
|
|
global_x = 128;
|
|
} else if (size >= 256) {
|
|
global_x = 64;
|
|
} else if (size >= 128) {
|
|
global_x = 32;
|
|
} else if (size >= 64) {
|
|
global_x = 16;
|
|
} else if (size >= 32) {
|
|
global_x = 8;
|
|
}
|
|
mGlobalWorkSize = {global_x, static_cast<uint32_t>(inputShape[0]), static_cast<uint32_t>(inputShape[2])};
|
|
mLocalWorkSize = {global_x, 1, 1 };
|
|
|
|
switch (mReductType) {
|
|
case 0:
|
|
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_mean_local", {});
|
|
break;
|
|
case 1:
|
|
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_max_local", {});
|
|
break;
|
|
case 2:
|
|
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_min_local", {});
|
|
break;
|
|
case 3:
|
|
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_mul_local", {});
|
|
break;
|
|
case 4:
|
|
mReduct1DKernel = runtime->buildKernel("reduction", "reduct_general_sum_local", {});
|
|
break;
|
|
default:
|
|
MNN_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
//printf("reduce axis:%d , %d %d %d %d, useLocal:%d\n", mAxis[0], inputShape[0], inputShape[1], inputShape[2], inputShape[3], mUseLocal);
|
|
|
|
mUnits.resize(1);
|
|
uint32_t idx = 0;
|
|
if(mUseLocal) {
|
|
mReduct1DKernel.setArg(idx++, mGlobalWorkSize[1]);
|
|
mReduct1DKernel.setArg(idx++, mGlobalWorkSize[2]);
|
|
} else {
|
|
mReduct1DKernel.setArg(idx++, mGlobalWorkSize[0]);
|
|
mReduct1DKernel.setArg(idx++, mGlobalWorkSize[1]);
|
|
}
|
|
mReduct1DKernel.setArg(idx++, openCLImage(input));
|
|
mReduct1DKernel.setArg(idx++, openCLImage(output));
|
|
mReduct1DKernel.setArg(idx++, static_cast<int32_t>(inputShape[0]));
|
|
mReduct1DKernel.setArg(idx++, static_cast<int32_t>(inputShape[1]));
|
|
mReduct1DKernel.setArg(idx++, static_cast<int32_t>(inputShape[2]));
|
|
mReduct1DKernel.setArg(idx++, static_cast<int32_t>(inputShape[3]));
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode ReductionExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("start ReductionExecution onExecute !\n");
|
|
#endif
|
|
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
cl::Event event;
|
|
if(mUseLocal) {
|
|
run3DKernelDefault(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize,
|
|
mOpenCLBackend->getOpenCLRuntime(), &event);
|
|
} else {
|
|
runKernel2D(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize,
|
|
mOpenCLBackend->getOpenCLRuntime(), &event);
|
|
}
|
|
int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
|
|
MNN_PRINT("kernel cost:%d us Reduct1D\n",costTime);
|
|
#else
|
|
if(mUseLocal) {
|
|
run3DKernelDefault(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize,
|
|
mOpenCLBackend->getOpenCLRuntime());
|
|
} else {
|
|
runKernel2D(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize,
|
|
mOpenCLBackend->getOpenCLRuntime());
|
|
}
|
|
#endif
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end ReductionExecution onExecute !\n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class ReductionCreator : public OpenCLBackend::Creator {
|
|
public:
|
|
virtual ~ReductionCreator() = default;
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const override {
|
|
if (inputs[0]->getDimensionType() == Tensor::TENSORFLOW) {
|
|
auto openCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
auto reduct = op->main_as_ReductionParam();
|
|
if (nullptr == reduct->dim()) {
|
|
return NULL;
|
|
}
|
|
if(reduct->dim()->size() != 1) {
|
|
return NULL;
|
|
}
|
|
switch (op->main_as_ReductionParam()->operation()) {
|
|
case ReductionType_MEAN:
|
|
break;
|
|
case ReductionType_MAXIMUM:
|
|
break;
|
|
case ReductionType_MINIMUM:
|
|
break;
|
|
case ReductionType_PROD:
|
|
break;
|
|
case ReductionType_SUM:
|
|
break;
|
|
default:
|
|
return NULL;
|
|
break;
|
|
}
|
|
return new ReductionExecution(op, backend);
|
|
}
|
|
return NULL;
|
|
}
|
|
};
|
|
|
|
OpenCLCreatorRegister<ReductionCreator> __reduction_op(OpType_Reduction, IMAGE);
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|