MNN/tools/cpp/revertMNNModel.cpp

154 lines
5.8 KiB
C++

//
// revertMNNModel.cpp
// MNN
//
// Created by MNN on 2019/01/31.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <cstdlib>
#include <random>
#include <ctime>
#include <fstream>
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <MNN/MNNDefine.h>
#include "revertMNNModel.hpp"
#include "common/CommonCompute.hpp"
#include "common/MemoryFormater.h"
Revert::Revert(const char* originalModelFileName) {
std::ifstream inputFile(originalModelFileName, std::ios::binary);
inputFile.seekg(0, std::ios::end);
const auto size = inputFile.tellg();
inputFile.seekg(0, std::ios::beg);
char* buffer = new char[size];
inputFile.read(buffer, size);
inputFile.close();
mMNNNet = MNN::UnPackNet(buffer);
delete[] buffer;
MNN_ASSERT(mMNNNet->oplists.size() > 0);
}
Revert::~Revert() {
}
void* Revert::getBuffer() const {
return reinterpret_cast<void*>(mBuffer.get());
}
const size_t Revert::getBufferSize() const {
return mBufferSize;
}
void Revert::packMNNNet() {
flatbuffers::FlatBufferBuilder builder(1024);
auto offset = MNN::Net::Pack(builder, mMNNNet.get());
builder.Finish(offset);
mBufferSize = builder.GetSize();
mBuffer.reset(new uint8_t[mBufferSize], std::default_delete<uint8_t[]>());
::memcpy(mBuffer.get(), builder.GetBufferPointer(), mBufferSize);
mMNNNet.reset();
}
void Revert::initialize(float spasity, int sparseBlockOC, bool rewrite) {
if (mMNNNet->bizCode == "benchmark" || rewrite) {
randStart();
bool useSparse = spasity > 0.5f;
for (auto& op : mMNNNet->oplists) {
const auto opType = op->type;
switch (opType) {
case MNN::OpType_Convolution:
case MNN::OpType_Deconvolution:
case MNN::OpType_ConvolutionDepthwise: {
auto param = op->main.AsConvolution2D();
auto& convCommon = param->common;
const int weightReduceStride = convCommon->kernelX * convCommon->kernelY * convCommon->inputCount;
const int oc = convCommon->outputCount / convCommon->group;
param->weight.resize(oc * weightReduceStride);
::memset(param->weight.data(), 0, param->weight.size() * sizeof(float));
param->bias.resize(convCommon->outputCount);
::memset(param->bias.data(), 0, param->bias.size() * sizeof(float));
if (useSparse) {
size_t weightNNZElement, weightBlockNumber = 0;
MNN::CommonCompute::fillRandValueAsSparsity(weightNNZElement, weightBlockNumber, param->weight.data(), oc, weightReduceStride, spasity, sparseBlockOC);
MNN::AttributeT* arg1(new MNN::AttributeT);
arg1->key = "sparseBlockOC";
arg1->i = sparseBlockOC;
MNN::AttributeT* arg2(new MNN::AttributeT);
arg2->key = "sparseBlockKernel";
arg2->i = 1;
MNN::AttributeT* arg3(new MNN::AttributeT);
arg3->key = "NNZElement";
arg3->i = weightNNZElement;
MNN::AttributeT* arg4(new MNN::AttributeT);
arg4->key = "blockNumber";
arg4->i = weightBlockNumber;
flatbuffers::FlatBufferBuilder builder;
std::vector<flatbuffers::Offset<MNN::Attribute>> argsVector;
auto sparseArg1 = MNN::CreateAttribute(builder, arg1);
auto sparseArg2 = MNN::CreateAttribute(builder, arg2);
auto sparseArg3 = MNN::CreateAttribute(builder, arg3);
auto sparseArg4 = MNN::CreateAttribute(builder, arg4);
argsVector.emplace_back(sparseArg1);
argsVector.emplace_back(sparseArg2);
argsVector.emplace_back(sparseArg3);
argsVector.emplace_back(sparseArg4);
auto sparseArgs = builder.CreateVectorOfSortedTables<MNN::Attribute>(&argsVector);
MNN::SparseAlgo prune_algo_type;
if (sparseBlockOC == 4) {
prune_algo_type = MNN::SparseAlgo_SIMD_OC;
} else {
prune_algo_type = MNN::SparseAlgo_RANDOM;
}
auto sparseCom = MNN::CreateSparseCommon(builder, prune_algo_type, sparseArgs);
builder.Finish(sparseCom);
auto sparseComPtr = flatbuffers::GetRoot<MNN::SparseCommon>(builder.GetBufferPointer())->UnPack();
param->sparseParameter.reset(sparseComPtr);
MNN::CommonCompute::compressFloatWeightToSparse(op.get());
}
break;
}
case MNN::OpType_Scale: {
auto param = op->main.AsScale();
param->biasData.resize(param->channels);
param->scaleData.resize(param->channels);
fillRandValue(param->scaleData.data(), param->channels);
fillRandValue(param->biasData.data(), param->channels);
break;
}
default:
break;
}
}
}
packMNNNet();
}
void Revert::fillRandValue(float * data, size_t size) {
unsigned int seed = 1000;
std::mt19937 rng(seed);
std::uniform_real_distribution<float> uniform_dist(-2, 2);
for (size_t i = 0; i < size; i++) {
*data = uniform_dist(rng);
}
return;
}
void Revert::randStart() {
}