mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			99 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			99 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapePriorbox.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/SizeComputer.hpp"
 | 
						|
#include "core/TensorUtils.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
class PriorBoxComputer : public SizeComputer {
 | 
						|
public:
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(2 == inputs.size());
 | 
						|
        MNN_ASSERT(1 == outputs.size());
 | 
						|
 | 
						|
        auto layer = op->main_as_PriorBox();
 | 
						|
 | 
						|
        auto inputTensor  = inputs[0];
 | 
						|
        auto inputTensor1 = inputs[1];
 | 
						|
 | 
						|
        int w = inputTensor->width();
 | 
						|
        int h = inputTensor->height();
 | 
						|
 | 
						|
        auto minSizes     = layer->minSizes();
 | 
						|
        auto maxSizes     = layer->maxSizes();
 | 
						|
        auto aspectRatios = layer->aspectRatios();
 | 
						|
 | 
						|
        int flip         = layer->flip();
 | 
						|
        int imageWidth   = layer->imageWidth();
 | 
						|
        int imageHeight  = layer->imageHeight();
 | 
						|
        float stepWidth  = layer->stepWidth();
 | 
						|
        float stepHeight = layer->stepHeight();
 | 
						|
 | 
						|
        int imageW = imageWidth;
 | 
						|
        int imageH = imageHeight;
 | 
						|
        if (imageW <= 0) {
 | 
						|
            imageW = inputTensor1->width();
 | 
						|
        }
 | 
						|
        if (imageH <= 0) {
 | 
						|
            imageH = inputTensor1->height();
 | 
						|
        }
 | 
						|
 | 
						|
        float stepW = stepWidth;
 | 
						|
        float stepH = stepHeight;
 | 
						|
        if (stepW <= 0) {
 | 
						|
            stepW = (float)imageW / w;
 | 
						|
        }
 | 
						|
 | 
						|
        if (stepH <= 0) {
 | 
						|
            stepH = (float)imageH / h;
 | 
						|
        }
 | 
						|
 | 
						|
        int minSizeCount = minSizes ? (int)minSizes->size() : 0;
 | 
						|
        int maxSizeCount = maxSizes ? (int)maxSizes->size() : 0;
 | 
						|
        std::vector<float> aspectRatiosValue{1.0f};
 | 
						|
        if (aspectRatios != nullptr) {
 | 
						|
            for (int i = 0; i < aspectRatios->size(); ++i) {
 | 
						|
                auto ratio = aspectRatios->data()[i];
 | 
						|
                bool exist = false;
 | 
						|
                for (auto v : aspectRatiosValue) {
 | 
						|
                    auto diff = v - ratio;
 | 
						|
                    if (diff < 0) {
 | 
						|
                        diff = -diff;
 | 
						|
                    }
 | 
						|
                    if (diff < 1e-6) {
 | 
						|
                        exist = true;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if (!exist) {
 | 
						|
                    aspectRatiosValue.emplace_back(ratio);
 | 
						|
                    if (flip) {
 | 
						|
                        aspectRatiosValue.emplace_back(1.0f / ratio);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        int priorCount = minSizeCount * aspectRatiosValue.size() + maxSizeCount;
 | 
						|
 | 
						|
        auto& outputTensorBuffer                              = outputs[0]->buffer();
 | 
						|
        outputTensorBuffer.dim[0].extent                      = 1;
 | 
						|
        outputTensorBuffer.dim[1].extent                      = 2;
 | 
						|
        outputTensorBuffer.dim[2].extent                      = 4 * w * h * priorCount;
 | 
						|
        outputTensorBuffer.dim[3].extent                      = 1;
 | 
						|
        outputTensorBuffer.type = halide_type_of<float>();
 | 
						|
        TensorUtils::getDescribe(outputs[0])->dimensionFormat = MNN_DATA_FORMAT_NC4HW4;
 | 
						|
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE(PriorBoxComputer, OpType_PriorBox);
 | 
						|
} // namespace MNN
 |