MNN/source/backend/cuda/execution/RasterExecution.cpp

378 lines
14 KiB
C++

//
// RasterExecution.cpp
// MNN
//
// Created by MNN on b'2020/04/02'.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "RasterExecution.hpp"
#include "core/OpCommonUtils.hpp"
#include "core/BufferAllocator.hpp"
#include "Raster.cuh"
#include "Transpose.cuh"
#include "MNNCUDADefine.hpp"
namespace MNN {
namespace CUDA {
static void getBatchChannelArea(const Tensor* t, int& batch, int& channel, int& area) {
batch = t->batch();
if (t->dimensions() == 4) {
channel = t->channel();
area = t->width() * t->height();
} else if (t->dimensions() == 3) {
auto format = TensorUtils::getDescribe(t)->dimensionFormat;
if (format == MNN_DATA_FORMAT_NHWC) {
channel = t->length(2);
area = t->length(1);
} else {
channel = t->length(1);
area = t->length(2);
}
} else {
auto format = TensorUtils::getDescribe(t)->dimensionFormat;
if (format == MNN_DATA_FORMAT_NHWC) {
for (int i = t->dimensions() - 1; i > 0; i--) {
int len = t->length(i);
if (len > 1) {
if (channel == 1) {
channel = len;
} else {
area *= len;
}
}
}
} else {
for (int i = 1; i < t->dimensions(); i++) {
int len = t->length(i);
if (len > 1) {
if (channel == 1) {
channel = len;
} else {
area *= len;
}
}
}
}
}
}
static int _singleConvert(const Tensor::InsideDescribe::Region& region, const Tensor* dest) {
auto origin = region.origin;
auto srcFormat = TensorUtils::getDescribe(origin)->dimensionFormat;
auto dstFormat = TensorUtils::getDescribe(dest)->dimensionFormat;
if (srcFormat == dstFormat) {
return 0;
}
if (0 != region.src.offset || 0 != region.dst.offset) {
return 0;
}
int dstBatch = 1, dstChannel = 1, dstArea = 1,
srcBatch = 1, srcChannel = 1, srcArea = 1;
getBatchChannelArea(origin, srcBatch, srcChannel, srcArea);
getBatchChannelArea(dest, dstBatch, dstChannel, dstArea);
if (dstBatch != srcBatch) {
return 0;
}
if (dstChannel != srcChannel) {
return 0;
}
if (dstArea != srcArea) {
return 0;
}
auto totalSize = dstBatch * dstChannel * dstArea;
int srcSize = 1;
int dstSize = 1;
int res = 1;
for (int i=0; i<3; ++i) {
if (region.size[i] == 1) {
continue;
}
if (region.src.stride[i] != region.dst.stride[i]) {
if (dstArea == 1) {
// Batch / Channel transpose
return 0;
}
res = 2;
}
srcSize += (region.size[i] - 1) * region.src.stride[i];
dstSize += (region.size[i] - 1) * region.dst.stride[i];
}
if (srcSize != totalSize || dstSize != totalSize ) {
return 0;
}
// Check If it can be described as NHWC <-> NC4HW4 transpose
if (2 == res) {
int srcChannelStride;
int dstChannelStride;
int srcAreaStride;
int dstAreaStride;
if (MNN_DATA_FORMAT_NC4HW4 == srcFormat) {
srcChannelStride = srcArea;
srcAreaStride = 1;
dstChannelStride = 1;
dstAreaStride = srcChannel;
} else {
srcChannelStride = 1;
srcAreaStride = srcChannel;
dstAreaStride = 1;
dstChannelStride = srcArea;
}
for (int i=0; i<3; ++i) {
if (region.size[i] == 1) {
continue;
}
if (region.size[i] == dstBatch) {
if (region.src.stride[i] != region.dst.stride[i]) {
return 0;
}
continue;
}
if (region.size[i] == srcChannel) {
if (region.src.stride[i] != srcChannelStride || region.dst.stride[i] != dstChannelStride) {
return 0;
}
}
if (region.size[i] == srcArea) {
if (region.src.stride[i] != srcAreaStride || region.dst.stride[i] != dstAreaStride) {
return 0;
}
}
}
return 2;
}
return 1;
}
ErrorCode RasterExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(inputs.size() == 1);
MNN_ASSERT(outputs.size() == 1);
auto input = inputs[0];
auto output = outputs[0];
auto des = TensorUtils::getDescribe(input);
auto outputDes = TensorUtils::getDescribe(output);
mNeedZero = !TensorUtils::regionIsFull(input);
mTempInputCopy.clear();
mTempInput.clear();
mTempOutput = nullptr;
mOutputPtr = output;
mSingleConvert = 0;
// srcNum == 1 && srcFormat != dstFormat : Single Convert
if (des->regions.size() == 1) {
mSingleConvert = _singleConvert(des->regions[0], output);
if (mSingleConvert > 0) {
return NO_ERROR;
}
}
for(int i = 0; i < des->regions.size(); i++) {
auto& slice = des->regions[i];
auto origin = slice.origin;
if (TensorUtils::getDescribe(origin)->dimensionFormat != MNN_DATA_FORMAT_NC4HW4) {
continue;
}
if (mTempInput.find(origin)!=mTempInput.end()) {
continue;
}
std::shared_ptr<Tensor> newTensor(new Tensor);
TensorUtils::copyShape(origin, newTensor.get());
TensorUtils::getDescribe(newTensor.get())->dimensionFormat = MNN_DATA_FORMAT_NCHW;
newTensor->buffer().type = origin->getType();
TensorUtils::setLinearLayout(newTensor.get());
mTempInput.insert(std::make_pair(origin, newTensor));
}
if (MNN_DATA_FORMAT_NC4HW4 == outputDes->dimensionFormat) {
mTempOutput.reset(new Tensor);
TensorUtils::setupTensorInfo(output, mTempOutput.get(), MNN_DATA_FORMAT_NCHW);
auto res = backend()->onAcquireBuffer(mTempOutput.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
mOutputPtr = mTempOutput.get();
}
for (auto& iter : mTempInput) {
auto res = backend()->onAcquireBuffer(iter.second.get(), Backend::DYNAMIC);
if (!res) {
return OUT_OF_MEMORY;
}
}
for (int i = 0; i < des->regions.size(); ++i) {
auto& slice = des->regions[i];
if (nullptr == slice.origin) {
continue;
}
auto iter = mTempInput.find(slice.origin);
if (iter != mTempInput.end()) {
mTempInputCopy.emplace_back(std::make_pair(iter->second.get(), &slice));
continue;
}
mTempInputCopy.emplace_back(std::make_pair(slice.origin, &slice));
}
//MNN_PRINT("Raster copy size:%d\n", mTempInputCopy.size());
if(mTempInputCopy.size() > 1) {
mFuseRaster.first = 1;
mFuseRaster.second = mTempInputCopy.size();
auto& slice0 = *mTempInputCopy[0].second;
for (int i = 1; i < mTempInputCopy.size(); ++i) {
auto& slice = *mTempInputCopy[i].second;
if (mTempInputCopy[i].first != mTempInputCopy[0].first) {
mFuseRaster.first = 0;
//MNN_PRINT("Raster total:%d, index:%d, origin:%p-%p\n", mTempInputCopy.size(), i, mTempInputCopy[i].first, mTempInputCopy[0].first);
break;
}
if (slice0.src.stride[0] != slice.src.stride[0] || slice0.dst.stride[0] != slice.dst.stride[0]) {
//MNN_PRINT("Raster total:%d, index:%d, src stride0:%d-%d, , dst stride0:%d-%d\n", mTempInputCopy.size(), i, slice.src.stride[0], slice0.src.stride[0], slice.dst.stride[0], slice0.dst.stride[0]);
mFuseRaster.first = 0;
break;
}
if (slice0.src.stride[1] != slice.src.stride[1] || slice0.dst.stride[1] != slice.dst.stride[1]) {
//MNN_PRINT("Raster total:%d, index:%d, src stride1:%d-%d, , dst stride1:%d-%d\n", mTempInputCopy.size(), i, slice.src.stride[1], slice0.src.stride[1], slice.dst.stride[1], slice0.dst.stride[1]);
mFuseRaster.first = 0;
break;
}
if (slice0.src.stride[2] != slice.src.stride[2] || slice0.dst.stride[2] != slice.dst.stride[2]) {
//MNN_PRINT("Raster total:%d, index:%d, src stride2:%d-%d, , dst stride2:%d-%d\n", mTempInputCopy.size(), i, slice.src.stride[2], slice0.src.stride[2], slice.dst.stride[2], slice0.dst.stride[2]);
mFuseRaster.first = 0;
break;
}
if (slice0.size[0] != slice.size[0] || slice0.size[1] != slice.size[1] || slice0.size[2] != slice.size[2]) {
//MNN_PRINT("Raster total:%d, index:%d, copy size:%d-%d-%d, %d-%d-%d\n", mTempInputCopy.size(), i, slice.size[0], slice.size[1], slice.size[2], slice0.size[0], slice0.size[1], slice0.size[2]);
mFuseRaster.first = 0;
break;
}
}
}
if(mFuseRaster.first > 0) {
auto& slice0 = *mTempInputCopy[0].second;
auto tensor = mTempInputCopy[0].first;
int regionSize = mTempInputCopy.size();
std::vector<int32_t> temp(2*regionSize, 0);
// TODO: Reduce logic for these code
mFuseRaster.first = 4;
for (int i = 0; i < regionSize; ++i) {
auto& slice = *mTempInputCopy[i].second;
temp[i] = slice.src.offset;
temp[regionSize+i] = slice.dst.offset;
if (temp[i] % 4 != 0 || temp[regionSize+i] % 4 != 0) {
mFuseRaster.first = 1;
}
//printf("%d-%d-%d\n", regionSize, temp[i], temp[regionSize+i]);
}
//save srcOffset/dstOffset to Device
offsetTensor.reset(Tensor::createDevice<int32_t>({2*regionSize}));
backend()->onAcquireBuffer(offsetTensor.get(), Backend::STATIC);
mOffset = (void *)offsetTensor.get()->buffer().device;
cuda_check(cudaMemcpy(mOffset, temp.data(), 2*regionSize*sizeof(int32_t), cudaMemcpyHostToDevice));
mTempInputCopy.clear();
mTempInputCopy.emplace_back(std::make_pair(tensor, &slice0));
}
for (auto& iter : mTempInput) {
backend()->onReleaseBuffer(iter.second.get(), Backend::DYNAMIC);
}
if (nullptr != mTempOutput) {
backend()->onReleaseBuffer(mTempOutput.get(), Backend::DYNAMIC);
}
return NO_ERROR;
}
ErrorCode RasterExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto bn = static_cast<CUDABackend*>(backend());
auto input = inputs[0];
auto output = outputs[0];
auto bytes = bn->getBytes(output);
auto runtime = static_cast<CUDABackend*>(backend())->getCUDARuntime();
// printf("raster format:%d -> %d, addr:%p %p\n", TensorUtils::getDescribe(input)->dimensionFormat, \
// TensorUtils::getDescribe(output)->dimensionFormat, \
// input->deviceId(), output->deviceId());
if (mSingleConvert > 0) {
auto realInput = TensorUtils::getDescribe(input)->regions[0].origin;
int srcBatch = 1, srcChannel = 1, srcArea = 1;
getBatchChannelArea(realInput, srcBatch, srcChannel, srcArea);
auto sourceFormat = TensorUtils::getDescribe(realInput)->dimensionFormat;
auto destFormat = TensorUtils::getDescribe(output)->dimensionFormat;
int batchStride = srcChannel * srcArea * bytes;
int inputBatchStride = batchStride;
int outputBatchStride = batchStride;
PackInfo pack;
pack.inside = srcArea;
pack.axis = srcChannel;
pack.unit = PACK_NUMBER;
pack.outside = srcBatch;
if (mSingleConvert == 1) {
pack.axisStride = srcArea;
pack.insideStride = 1;
} else if (mSingleConvert == 2) {
pack.axisStride = 1;
pack.insideStride = srcChannel;
}
auto srcPtr = (void*)realInput->deviceId();
auto dstPtr = (void*)output->deviceId();
if (MNN_DATA_FORMAT_NC4HW4 == sourceFormat) {
if (realInput->dimensions() <= 1) {
cudaMemcpy(dstPtr, srcPtr, bn->realSize(realInput) * bytes, cudaMemcpyDeviceToDevice);
return NO_ERROR;
}
UnpackBuffer(dstPtr, srcPtr, &pack, bytes, runtime);
} else {
if (output->dimensions() <= 1) {
cudaMemcpy(dstPtr, srcPtr, bn->realSize(realInput) * bytes, cudaMemcpyDeviceToDevice);
return NO_ERROR;
}
PackBuffer(dstPtr, srcPtr, &pack, bytes, runtime);
}
return NO_ERROR;
}
if (mNeedZero) {
auto size = static_cast<CUDABackend*>(backend())->realSize(mOutputPtr) * bytes;
cudaMemset((uint8_t*)mOutputPtr->deviceId(), 0, size);
}
for (auto& iter : mTempInput) {
backend()->onCopyBuffer(iter.first, iter.second.get());
}
//printf("\n%d\n", mFuseRaster.first);
if(mFuseRaster.first > 0) {
MNN_ASSERT(mTempInputCopy.size() == 1);
auto& iter = mTempInputCopy[0];
auto& slice = *(iter.second);
auto srcPtr = (uint8_t*)iter.first->deviceId();
auto dstPtr = (uint8_t*)mOutputPtr->deviceId();
//printf("fuseRaster:%p-%p\n", mSrcOffset, mDstOffset);
FuseRasterBlit(dstPtr, srcPtr, slice.size, slice.src.stride, slice.dst.stride, mFuseRaster.second, mOffset, bytes, runtime, mFuseRaster.first);
} else {
for (auto& iter : mTempInputCopy) {
auto srcPtr = (uint8_t*)iter.first->deviceId() + iter.second->src.offset * bytes;
auto dstPtr = (uint8_t*)mOutputPtr->deviceId() + iter.second->dst.offset * bytes;
RasterBlit(dstPtr, srcPtr, iter.second->size, iter.second->src.stride, iter.second->dst.stride, bytes, runtime);
}
}
if (nullptr != mTempOutput) {
backend()->onCopyBuffer(mTempOutput.get(), output);
}
return NO_ERROR;
}
class RasterExecutionFactory : public CUDABackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const {
return new RasterExecution(backend);
}
};
static CUDACreatorRegister<RasterExecutionFactory> __init(OpType_Raster);
}
}