MNN/source/core/SizeComputer.cpp

140 lines
4.1 KiB
C++

//
// SizeComputer.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "core/SizeComputer.hpp"
#include <stdlib.h>
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include <mutex>
namespace MNN {
#ifdef MNN_CODEGEN_REGISTER
void registerShapeOps();
#endif
SizeComputerSuite* SizeComputerSuite::gInstance = nullptr;
SizeComputerSuite::~SizeComputerSuite() {
for (auto& iter : mRegistry) {
delete iter.second;
}
}
void SizeComputerSuite::init() {
#ifdef MNN_CODEGEN_REGISTER
static std::once_flag _of;
std::call_once(_of, [&]() {
registerShapeOps();
});
#endif
}
SizeComputerSuite* SizeComputerSuite::get() {
static std::once_flag of;
std::call_once(of, [&]() {
gInstance = new SizeComputerSuite;
});
return gInstance;
}
void SizeComputerSuite::insert(SizeComputer* t, OpType type) {
mRegistry.insert(std::make_pair(type, t));
}
SizeComputer* SizeComputerSuite::search(OpType name) {
auto iter = mRegistry.find(name);
if (iter == mRegistry.end()) {
return nullptr;
}
return iter->second;
}
float SizeComputer::onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const {
MNN_ASSERT(outputs.size() >= 1);
return (float)outputs[0]->elementSize() / 1024.0f / 1024.0f;
}
bool SizeComputer::opNeedContent(OpType type, int index) {
switch (type) {
case OpType_ZerosLike:
case OpType_ZeroGrad:
case OpType_Shape:
case OpType_Rank:
case OpType_Const:
case OpType_Size:
case OpType_PriorBox:
return false;
case OpType_Interp:
case OpType_Crop:
case OpType_Reshape:
case OpType_Resize:
if (1 == index) {
return false;
}
break;
default:
break;
}
return true;
}
float SizeComputer::computeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto computeFactory = SizeComputerSuite::get();
auto computer = computeFactory->search(op->type());
if (nullptr != computer) {
return computer->onComputeFlops(op, inputs, outputs);
}
auto sumFlops = 0.0f;
for (auto output : outputs) {
sumFlops += (float)output->elementSize() / 1024.0f / 1024.0f;
}
return sumFlops;
}
bool SizeComputer::computeOutputSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
auto computeFactory = SizeComputerSuite::get();
// When op is nullptr, it means a copy op
if (nullptr != op) {
auto computer = computeFactory->search(op->type());
if (nullptr != computer) {
bool ret = computer->onComputeSize(op, inputs, outputs);
return ret;
}
}
// Default Set to the same
if (inputs.size() >= 1 && outputs.size() == 1) {
if (inputs[0] == outputs[0]) {
return true;
}
const auto& ib = inputs[0]->buffer();
auto& ob = outputs[0]->buffer();
memcpy(ob.dim, ib.dim, sizeof(halide_dimension_t) * ib.dimensions);
ob.dimensions = ib.dimensions;
ob.type = ib.type;
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
return true;
}
// Not Support
MNN_PRINT("Can't compute size for %d, name=%s\n", op->type(), op->name() ? op->name()->c_str() : "");
return false;
}
std::vector<int> SizeComputer::needInputContent(const MNN::Op* op) {
auto computeFactory = SizeComputerSuite::get();
// When op is nullptr, it means a copy op
if (nullptr != op) {
auto computer = computeFactory->search(op->type());
if (nullptr != computer) {
return computer->mNeedContentInputIndex;
}
}
return std::vector<int>{};
}
} // namespace MNN