mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			40 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			40 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeConst.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/SizeComputer.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
class ConstComputer : public SizeComputer {
 | 
						|
public:
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        //MNN_ASSERT(0 == inputs.size());
 | 
						|
        MNN_ASSERT(1 == outputs.size());
 | 
						|
 | 
						|
        // copy dims
 | 
						|
        auto output    = outputs[0];
 | 
						|
        auto parameter = op->main_as_Blob();
 | 
						|
 | 
						|
        output->buffer().dimensions = parameter->dims() ? parameter->dims()->size() : 0;
 | 
						|
        for (int i = 0; i < output->buffer().dimensions; i++) {
 | 
						|
            output->buffer().dim[i].extent = parameter->dims()->Get(i);
 | 
						|
        }
 | 
						|
 | 
						|
        output->setType(parameter->dataType());
 | 
						|
        TensorUtils::getDescribe(output)->dimensionFormat = parameter->dataFormat();
 | 
						|
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE(ConstComputer, OpType_Const);
 | 
						|
REGISTER_SHAPE(ConstComputer, OpType_TrainableParam);
 | 
						|
 | 
						|
} // namespace MNN
 |