mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			99 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			99 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeSlice.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/SizeComputer.hpp"
 | 
						|
#include <algorithm>
 | 
						|
namespace MNN {
 | 
						|
 | 
						|
class SliceComputer : public SizeComputer {
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(1 == inputs.size());
 | 
						|
        auto outputSize = (int)outputs.size();
 | 
						|
        auto slice = op->main_as_Slice();
 | 
						|
 | 
						|
        auto& input = inputs[0]->buffer();
 | 
						|
 | 
						|
        int axis = slice->axis();
 | 
						|
        if (axis < 0) {
 | 
						|
            axis += input.dimensions;
 | 
						|
        }
 | 
						|
 | 
						|
        if (MNN::NetSource_CAFFE == slice->sourceType()) {
 | 
						|
            // caffe Slice
 | 
						|
            int previous = 0;
 | 
						|
            for (int i = 0; i < slice->slicePoints()->size(); ++i) {
 | 
						|
                int sliceIndex    = slice->slicePoints()->data()[i];
 | 
						|
                auto& output      = outputs[i]->buffer();
 | 
						|
                output.dimensions = input.dimensions;
 | 
						|
                ::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
 | 
						|
                output.type             = input.type;
 | 
						|
                output.dim[axis].extent = sliceIndex - previous;
 | 
						|
                previous                = sliceIndex;
 | 
						|
            }
 | 
						|
 | 
						|
            // Compute Last
 | 
						|
            auto& output = outputs[outputs.size() - 1]->buffer();
 | 
						|
            ::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
 | 
						|
 | 
						|
            output.dim[axis].extent = input.dim[axis].extent - previous;
 | 
						|
        } else {
 | 
						|
            // tensorflow Split
 | 
						|
            if (1 == slice->slicePoints()->size()) {
 | 
						|
                // scalar
 | 
						|
                int numSplits = slice->slicePoints()->data()[0];
 | 
						|
                numSplits = std::min(numSplits, outputSize);
 | 
						|
                MNN_ASSERT(0 == input.dim[axis].extent % numSplits);
 | 
						|
                const int splitDim = input.dim[axis].extent / numSplits;
 | 
						|
                for (int i = 0; i < numSplits; i++) {
 | 
						|
                    auto& output      = outputs[i]->buffer();
 | 
						|
                    output.dimensions = input.dimensions;
 | 
						|
                    output.type       = input.type;
 | 
						|
                    ::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
 | 
						|
                    output.dim[axis].extent = splitDim;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                // one dimension tensor, ex: [5,30]=>[5,4]+[5,15]+[5,11], slicePoints is [4, 15, 11]
 | 
						|
                int numberSplits = slice->slicePoints()->size();
 | 
						|
                numberSplits = std::min(numberSplits, outputSize);
 | 
						|
                int determineTensorIndex = -1;
 | 
						|
                int maxSize              = 0;
 | 
						|
                for (int i = 0; i < numberSplits; i++) {
 | 
						|
                    auto& output      = outputs[i]->buffer();
 | 
						|
                    output.type       = input.type;
 | 
						|
                    output.dimensions = input.dimensions;
 | 
						|
                    ::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
 | 
						|
                    auto length = slice->slicePoints()->data()[i];
 | 
						|
                    if (-1 != length) {
 | 
						|
                        output.dim[axis].extent = length;
 | 
						|
                        maxSize += length;
 | 
						|
                    } else {
 | 
						|
                        if (determineTensorIndex >= 0) {
 | 
						|
                            // Don't support two -1 points
 | 
						|
                            return false;
 | 
						|
                        }
 | 
						|
                        determineTensorIndex = i;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if (determineTensorIndex >= 0) {
 | 
						|
                    auto& output            = outputs[determineTensorIndex]->buffer();
 | 
						|
                    output.dim[axis].extent = input.dim[axis].extent - maxSize;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        for (int i=0; i<outputs.size(); ++i) {
 | 
						|
            TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE(SliceComputer, OpType_Slice);
 | 
						|
} // namespace MNN
 |