mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			56 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			56 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeSliceTf.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/SizeComputer.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
 | 
						|
class SliceTfComputer : public SizeComputer {
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(inputs.size() == 3);
 | 
						|
        MNN_ASSERT(outputs.size() == 1);
 | 
						|
 | 
						|
        auto input = inputs[0];
 | 
						|
        // these two inputs should be const
 | 
						|
        auto begin_tensor = inputs[1];
 | 
						|
        auto size_tensor  = inputs[2];
 | 
						|
 | 
						|
        MNN_ASSERT(begin_tensor->buffer().dimensions == 1);
 | 
						|
        MNN_ASSERT(size_tensor->buffer().dimensions == 1);
 | 
						|
        MNN_ASSERT(input->buffer().dimensions >= 1);
 | 
						|
        MNN_ASSERT(input->buffer().dimensions == begin_tensor->buffer().dim[0].extent);
 | 
						|
        MNN_ASSERT(input->buffer().dimensions == size_tensor->buffer().dim[0].extent);
 | 
						|
 | 
						|
        auto output                 = outputs[0];
 | 
						|
        output->buffer().dimensions = input->buffer().dimensions;
 | 
						|
        output->buffer().type       = input->buffer().type;
 | 
						|
        int dim                     = 0;
 | 
						|
        for (int i = 0; i < input->buffer().dimensions; i++) {
 | 
						|
            dim = size_tensor->host<int32_t>()[i];
 | 
						|
            if (dim == -1 ) {
 | 
						|
                dim = input->buffer().dim[i].extent - begin_tensor->host<int32_t>()[i];
 | 
						|
            }
 | 
						|
            // size <= 0, this ouput is not useful, set the dimendsions 0
 | 
						|
            if (dim <= 0) {
 | 
						|
                output->buffer().dimensions = 0;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            output->buffer().dim[i].extent = dim;
 | 
						|
        }
 | 
						|
        for (int i=0; i<outputs.size(); ++i) {
 | 
						|
            TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE_INPUTS(SliceTfComputer, OpType_SliceTf, (std::vector<int>{1, 2}));
 | 
						|
} // namespace MNN
 |