MNN/demo/exec/segment.cpp

126 lines
4.3 KiB
C++

//
// segment.cpp
// MNN
//
// Created by MNN on 2019/07/01.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <stdio.h>
#include "ImageProcess.hpp"
#include "Interpreter.hpp"
#define MNN_OPEN_TIME_TRACE
#include <algorithm>
#include <fstream>
#include <functional>
#include <memory>
#include <sstream>
#include <vector>
#include "AutoTime.hpp"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "stb_image_write.h"
using namespace MNN;
using namespace MNN::CV;
int main(int argc, const char* argv[]) {
if (argc < 4) {
MNN_PRINT("Usage: ./segment.out model.mnn input.jpg output.jpg\n");
return 0;
}
std::shared_ptr<Interpreter> net(Interpreter::createFromFile(argv[1]));
ScheduleConfig config;
config.type = MNN_FORWARD_CPU;
auto session = net->createSession(config);
auto input = net->getSessionInput(session, NULL);
auto shape = input->shape();
shape[0] = 1;
net->resizeTensor(input, shape);
net->resizeSession(session);
auto output = net->getSessionOutput(session, NULL);
{
int inputDim = 0;
int size_w = 0;
int size_h = 0;
int bpp = 0;
bpp = input->channel();
size_h = input->height();
size_w = input->width();
if (bpp == 0)
bpp = 1;
if (size_h == 0)
size_h = 1;
if (size_w == 0)
size_w = 1;
MNN_PRINT("input: w:%d , h:%d, bpp: %d\n", size_w, size_h, bpp);
auto inputPatch = argv[2];
int width, height, channel;
auto inputImage = stbi_load(inputPatch, &width, &height, &channel, 4);
if (nullptr == inputImage) {
MNN_ERROR("Can't open %s\n", inputPatch);
return 0;
}
MNN_PRINT("origin size: %d, %d\n", width, height);
Matrix trans;
// Set scale, from dst scale to src
trans.setScale((float)(width-1) / (size_w-1), (float)(height-1) / (size_h-1));
ImageProcess::Config config;
config.filterType = BILINEAR;
// float mean[3] = {103.94f, 116.78f, 123.68f};
// float normals[3] = {0.017f, 0.017f, 0.017f};
float mean[3] = {127.5f, 127.5f, 127.5f};
float normals[3] = {0.00785f, 0.00785f, 0.00785f};
::memcpy(config.mean, mean, sizeof(mean));
::memcpy(config.normal, normals, sizeof(normals));
config.sourceFormat = RGBA;
config.destFormat = RGB;
std::shared_ptr<ImageProcess> pretreat(ImageProcess::create(config));
pretreat->setMatrix(trans);
pretreat->convert((uint8_t*)inputImage, width, height, 0, input);
stbi_image_free(inputImage);
}
net->runSession(session);
{
std::shared_ptr<Tensor> outputUser(new Tensor(output, Tensor::TENSORFLOW));
MNN_PRINT("output size:%d x %d x %d\n", outputUser->width(), outputUser->height(), outputUser->channel());
output->copyToHostTensor(outputUser.get());
auto width = outputUser->width();
auto height = outputUser->height();
auto channel = outputUser->channel();
std::shared_ptr<Tensor> wrapTensor(ImageProcess::createImageTensor<uint8_t>(outputUser->width(), outputUser->height(), 4, nullptr));
for (int y = 0; y < height; ++y) {
auto rgbaY = wrapTensor->host<uint8_t>() + 4 * y * width;
auto sourceY = outputUser->host<float>() + y * width * channel;
for (int x=0; x<width; ++x) {
auto sourceX = sourceY + channel * x;
int index = 0;
float maxValue = sourceX[0];
auto rgba = rgbaY + 4 * x;
for (int c=1; c<channel; ++c) {
if (sourceX[c] > maxValue) {
index = c;
maxValue = sourceX[c];
}
}
rgba[0] = 255;
rgba[2] = 0;
rgba[1] = 0;
rgba[3] = 255;
if (15 == index) {
rgba[2] = 255;
rgba[3] = 0;
}
}
}
stbi_write_png(argv[3], width, height, 4, wrapTensor->host<uint8_t>(), 4 * width);
}
return 0;
}