mirror of https://github.com/alibaba/MNN.git
419 lines
18 KiB
C++
419 lines
18 KiB
C++
//
|
|
// StaticModule.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on b'2020/09/10'.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "StaticModule.hpp"
|
|
#include <MNN/AutoTime.hpp>
|
|
#include <MNN/expr/Executor.hpp>
|
|
#include <MNN/expr/ExecutorScope.hpp>
|
|
#include <MNN/expr/ExprCreator.hpp>
|
|
#include "Utils.hpp"
|
|
#include "core/MNNMemoryUtils.h"
|
|
#include "RuntimeAttr.hpp"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
namespace Express {
|
|
|
|
static std::shared_ptr<BufferStorage> preRearrangeWeights( // NOLINT
|
|
const MNN::Net* net, std::map<const Op*, std::pair<std::shared_ptr<Execution>, DataType>>& cache, Backend* backend, Backend* backupBackend) {
|
|
std::unique_ptr<MNN::NetT> net_table(net->UnPack());
|
|
std::map<int, std::pair<std::shared_ptr<Execution>, DataType>> exeCache;
|
|
bool isQuantModel = !net_table->extraTensorDescribe.empty();
|
|
std::vector<TensorQuantInfoT*> quantInfos;
|
|
std::vector<std::unique_ptr<Tensor>> inputTensors;
|
|
if (isQuantModel) {
|
|
quantInfos.resize(net_table->tensorName.size(), nullptr);
|
|
for (auto& tensorDes : net_table->extraTensorDescribe) {
|
|
quantInfos[tensorDes->index] = tensorDes->quantInfo.get();
|
|
}
|
|
}
|
|
for (int i = 0; i < net->oplists()->size(); ++i) {
|
|
auto op = net->oplists()->Get(i);
|
|
auto op_table = net_table->oplists[i].get();
|
|
if (op->inputIndexes() == nullptr || op->inputIndexes()->size() != 1) {
|
|
continue;
|
|
}
|
|
switch (op->type()) {
|
|
case MNN::OpType_DepthwiseConvInt8:
|
|
case MNN::OpType_ConvInt8:
|
|
case MNN::OpType_ConvolutionDepthwise:
|
|
case MNN::OpType_Convolution: {
|
|
std::shared_ptr<Execution> exe;
|
|
DataType type = DataType_DT_FLOAT;
|
|
if (isQuantModel) {
|
|
type = DataType_DT_INT8;
|
|
int inputIdx = op->inputIndexes()->Get(0);
|
|
auto inputTensor = Tensor::create({1}, halide_type_of<float>());
|
|
inputTensors.emplace_back(inputTensor);
|
|
auto& inputQuantAttr = TensorUtils::getDescribe(inputTensor)->quantAttr;
|
|
if (quantInfos[inputIdx]) {
|
|
inputQuantAttr.reset(new QuantAttr);
|
|
inputQuantAttr->scale = quantInfos[inputIdx]->scale;
|
|
inputQuantAttr->min = quantInfos[inputIdx]->min;
|
|
inputQuantAttr->max = quantInfos[inputIdx]->max;
|
|
inputQuantAttr->zero = quantInfos[inputIdx]->zero;
|
|
// Input Set float to create CastWrapExecution
|
|
// FIXME: Use better way
|
|
TensorUtils::getDescribe(inputTensor)->type = DataType_DT_FLOAT;
|
|
} else {
|
|
inputQuantAttr.reset();
|
|
}
|
|
int outputIdx = op->inputIndexes()->Get(0);
|
|
auto outputTensor = Tensor::create({1}, halide_type_of<float>());
|
|
inputTensors.emplace_back(outputTensor);
|
|
auto& outputQuantAttr = TensorUtils::getDescribe(outputTensor)->quantAttr;
|
|
if (quantInfos[outputIdx]) {
|
|
outputQuantAttr.reset(new QuantAttr);
|
|
outputQuantAttr->scale = quantInfos[outputIdx]->scale;
|
|
outputQuantAttr->min = quantInfos[outputIdx]->min;
|
|
outputQuantAttr->max = quantInfos[outputIdx]->max;
|
|
outputQuantAttr->zero = quantInfos[outputIdx]->zero;
|
|
// Output Set int8 to create Int8 Execution
|
|
// FIXME: Use better way
|
|
TensorUtils::getDescribe(outputTensor)->type = DataType_DT_INT8;
|
|
} else {
|
|
outputQuantAttr.reset();
|
|
}
|
|
if (inputQuantAttr && outputQuantAttr && op->main_as_Convolution2D()->quanParameter()) {
|
|
exe.reset(backend->onCreate({inputTensor}, {outputTensor}, op));
|
|
if (exe.get() == nullptr) {
|
|
exe.reset(backupBackend->onCreate({inputTensor}, {outputTensor}, op));
|
|
}
|
|
}
|
|
} else {
|
|
exe.reset(backend->onCreate({}, {}, op));
|
|
if (exe.get() == nullptr) {
|
|
exe.reset(backupBackend->onCreate({}, {}, op));
|
|
}
|
|
}
|
|
if (nullptr == exe) {
|
|
break;
|
|
}
|
|
if (!exe->onClone(nullptr, op, nullptr)) {
|
|
break;
|
|
}
|
|
exeCache.insert(std::make_pair(i, std::make_pair(exe, type)));
|
|
if (OpParameter_Convolution2D == op_table->main.type) {
|
|
op_table->main.AsConvolution2D()->bias.clear();
|
|
op_table->main.AsConvolution2D()->weight.clear();
|
|
if (nullptr != op_table->main.AsConvolution2D()->symmetricQuan) {
|
|
op_table->main.AsConvolution2D()->symmetricQuan->bias.clear();
|
|
op_table->main.AsConvolution2D()->symmetricQuan->weight.clear();
|
|
}
|
|
if (nullptr != op_table->main.AsConvolution2D()->quanParameter) {
|
|
op_table->main.AsConvolution2D()->quanParameter->alpha.clear();
|
|
op_table->main.AsConvolution2D()->quanParameter->buffer.clear();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
flatbuffers::FlatBufferBuilder builder(1024);
|
|
builder.Finish(MNN::Net::Pack(builder, net_table.get()));
|
|
// Swap the raw buffer ownership.
|
|
std::shared_ptr<BufferStorage> net_storage(new BufferStorage);
|
|
net_storage->storage = builder.ReleaseRaw(net_storage->allocated_size, // NOLINT
|
|
net_storage->offset);
|
|
net = GetNet(net_storage->buffer());
|
|
for (auto& iter : exeCache) {
|
|
auto op = net->oplists()->Get(iter.first);
|
|
cache.insert(std::make_pair(op, iter.second));
|
|
}
|
|
return net_storage;
|
|
}
|
|
|
|
static void _resizeTensor(Tensor* tensor, const Tensor* dims, Session* session) {
|
|
MNN_ASSERT(nullptr != tensor);
|
|
bool dirty = false;
|
|
if (tensor->buffer().dimensions != dims->dimensions()) {
|
|
dirty = true;
|
|
} else {
|
|
for (int i = 0; i < dims->dimensions(); ++i) {
|
|
if (tensor->buffer().dim[i].extent != dims->length(i)) {
|
|
dirty = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!dirty) {
|
|
return;
|
|
}
|
|
|
|
tensor->buffer().dimensions = (int)dims->dimensions();
|
|
for (int i = 0; i < dims->dimensions(); ++i) {
|
|
tensor->buffer().dim[i].extent = dims->length(i);
|
|
tensor->buffer().dim[i].stride = dims->stride(i);
|
|
}
|
|
session->setNeedResize();
|
|
}
|
|
|
|
StaticModule::StaticModule(const void* buffer, size_t length, const std::vector<std::string>& inputs,
|
|
const std::vector<std::string>& outputs, std::shared_ptr<MNN::Express::Executor::RuntimeManager> rtMgr, const Module::Config& moduleconfig, bool copyOutput, std::shared_ptr<Schedule::ScheduleInfo> sharedConst) {
|
|
setType("StaticModule");
|
|
mResource.reset(new Resource);
|
|
mResource->mInputs = inputs;
|
|
mResource->mOutputs = outputs;
|
|
mResource->mSharedConst = sharedConst;
|
|
mResource->mModes.inputMode = moduleconfig.shapeMutable ? Interpreter::Session_Input_User : Interpreter::Session_Input_Inside;
|
|
mResource->mModes.outputMode = Interpreter::Session_Output_User;
|
|
std::shared_ptr<BufferStorage> net_storage;
|
|
std::map<const Op*, std::pair<std::shared_ptr<Execution>, DataType>> exeCache;
|
|
RuntimeInfo rt;;
|
|
if(nullptr == rtMgr && moduleconfig.backend != nullptr) {
|
|
ScheduleConfig sche_config;
|
|
sche_config.type = moduleconfig.backend->type;
|
|
sche_config.backendConfig = moduleconfig.backend->config;
|
|
rtMgr.reset(Executor::RuntimeManager::createRuntimeManager(sche_config));
|
|
}
|
|
const BackendConfig* userConfig = nullptr;
|
|
if (nullptr == rtMgr) {
|
|
rt = Executor::getRuntime();
|
|
} else {
|
|
mResource->mModes = rtMgr->getInside()->modes;
|
|
rt = rtMgr->getInside()->mRuntime;
|
|
userConfig = &rtMgr->getInside()->mConfig;
|
|
}
|
|
if (moduleconfig.rearrange) {
|
|
mResourceBackend.reset(rt.first.begin()->second->onCreate(userConfig));
|
|
if (mResourceBackend->type() == MNN_FORWARD_CPU) {
|
|
mBackupResourceBackend = mResourceBackend;
|
|
} else {
|
|
BackendConfig defaultConfig;
|
|
defaultConfig.flags = 4;
|
|
mBackupResourceBackend.reset(rt.second->onCreate(&defaultConfig));
|
|
}
|
|
net_storage = preRearrangeWeights(GetNet(buffer), exeCache, mResourceBackend.get(), mBackupResourceBackend.get());
|
|
buffer = net_storage->buffer();
|
|
length = net_storage->size();
|
|
} else {
|
|
net_storage.reset(new BufferStorage);
|
|
net_storage->storage = new uint8_t[length];
|
|
if (nullptr == net_storage->storage) {
|
|
MNN_ERROR("Allock Error in StaticModule's net\n");
|
|
return;
|
|
}
|
|
net_storage->allocated_size = length;
|
|
net_storage->offset = 0;
|
|
::memcpy(net_storage->storage, buffer, length);
|
|
buffer = net_storage->storage;
|
|
}
|
|
mResource->mNetStorage = std::move(net_storage);
|
|
mResource->mOutputNumbers = (int)outputs.size();
|
|
/** Compute:
|
|
std::vector<int, int> mOutputFromTensor;
|
|
std::vector<int, int> mOutputFromInput;
|
|
*/
|
|
for (int i = 0; i < outputs.size(); ++i) {
|
|
auto& t = outputs[i];
|
|
bool fromInput = false;
|
|
for (int j = 0; j < inputs.size(); ++j) {
|
|
if (inputs[j] == t) {
|
|
fromInput = true;
|
|
mResource->mOutputFromInput.emplace_back(std::make_pair(i, j));
|
|
break;
|
|
}
|
|
}
|
|
if (fromInput) {
|
|
continue;
|
|
}
|
|
mResource->mOutputFromTensor.emplace_back(i);
|
|
}
|
|
if (mResource->mOutputFromTensor.empty()) {
|
|
return;
|
|
}
|
|
// TODO: Add Config
|
|
mResource->mConfig.numThread = 1;
|
|
mResource->mConfig.type = rt.first.begin()->first;
|
|
mResource->mConfig.path.mode = ScheduleConfig::Path::Mode::Tensor;
|
|
mResource->mConfig.path.outputs = outputs;
|
|
mResource->mConfig.saveTensors = outputs;
|
|
mResource->mConfig.path.inputs = inputs;
|
|
mResource->mConfig.backendConfig = (BackendConfig*)userConfig;
|
|
Schedule::ScheduleInfo scheduleInfo;
|
|
// Copy Const
|
|
if (nullptr != mResource->mSharedConst) {
|
|
scheduleInfo.defaultBackend = mResource->mSharedConst->defaultBackend;
|
|
scheduleInfo.allTensors = mResource->mSharedConst->allTensors;
|
|
}
|
|
// Schedule
|
|
auto res = Schedule::schedule(scheduleInfo, GetNet(buffer), {mResource->mConfig}, rt);
|
|
if (!res) {
|
|
return;
|
|
}
|
|
mResource->mUseContentInputs = scheduleInfo.needInputContentForShape;
|
|
if (mResource->mUseContentInputs) {
|
|
mResource->mModes.inputMode = Interpreter::Session_Input_User;
|
|
}
|
|
mSession.reset(new Session(std::move(scheduleInfo), mResource->mModes, std::move(rt)));
|
|
mSession->cloneExecution(exeCache);
|
|
if (scheduleInfo.validForResize && mResource->mModes.inputMode == Interpreter::Session_Input_Inside) {
|
|
mSession->resize(false);
|
|
}
|
|
mInputTensors.resize(inputs.size());
|
|
for (int i = 0; i < inputs.size(); ++i) {
|
|
mInputTensors[i] = mSession->getInput(inputs[i].c_str());
|
|
}
|
|
mOutputTensors.resize(mResource->mOutputFromTensor.size());
|
|
for (int i = 0; i < mResource->mOutputFromTensor.size(); ++i) {
|
|
mOutputTensors[i] = mSession->getOutput(outputs[mResource->mOutputFromTensor[i]].c_str());
|
|
}
|
|
}
|
|
StaticModule::~StaticModule() {
|
|
mSession = nullptr;
|
|
mResourceBackend = nullptr;
|
|
mBackupResourceBackend = nullptr;
|
|
}
|
|
std::vector<Express::VARP> StaticModule::onForward(const std::vector<Express::VARP>& inputs) {
|
|
AUTOTIME;
|
|
std::vector<Express::VARP> outputs(mResource->mOutputNumbers);
|
|
for (auto& iter : mResource->mOutputFromInput) {
|
|
outputs[iter.first] = inputs[iter.second];
|
|
}
|
|
if (mResource->mOutputFromTensor.empty()) {
|
|
return outputs;
|
|
}
|
|
Variable::compute(inputs);
|
|
#ifdef MNN_DUMP_MEMORY
|
|
auto rt = Executor::getRuntime();
|
|
auto mem = rt.second->onGetMemoryInMB();
|
|
for (auto iter : rt.first) {
|
|
if (iter.second.get() != rt.second.get()) {
|
|
mem += iter.second->onGetMemoryInMB();
|
|
}
|
|
}
|
|
FUNC_PRINT_ALL(mem, f);
|
|
#endif
|
|
|
|
MNN_ASSERT(inputs.size() == mInputTensors.size());
|
|
if (mResource->mModes.inputMode == Interpreter::Session_Input_User) {
|
|
for (int i = 0; i < inputs.size(); ++i) {
|
|
if (nullptr == mInputTensors[i]) {
|
|
continue;
|
|
}
|
|
auto exprInfo = inputs[i]->expr();
|
|
auto inside = exprInfo.first->inside();
|
|
auto inputTensor = inside->mOutputTensors[exprInfo.second];
|
|
if (nullptr != inside->mCache) {
|
|
inputTensor = Executor::getOutput(inside->mCache.get(), inside->mCacheOffset);
|
|
}
|
|
auto srcDes = TensorUtils::getDescribe(inputTensor);
|
|
auto des = TensorUtils::getDescribe(mInputTensors[i]);
|
|
des->quantAttr = srcDes->quantAttr;
|
|
des->type = srcDes->type;
|
|
des->dimensionFormat = srcDes->dimensionFormat;
|
|
des->tensorArrayAttr = srcDes->tensorArrayAttr;
|
|
des->backend = srcDes->backend;
|
|
mInputTensors[i]->buffer().type = inputTensor->buffer().type;
|
|
_resizeTensor(mInputTensors[i], inputTensor, mSession.get());
|
|
if (mInputTensors[i]->buffer().host != inputTensor->buffer().host || mInputTensors[i]->buffer().device != inputTensor->buffer().device) {
|
|
mSession->setNeedMalloc();
|
|
}
|
|
mInputTensors[i]->buffer().host = inputTensor->buffer().host;
|
|
mInputTensors[i]->buffer().device = inputTensor->buffer().device;
|
|
}
|
|
if (mResource->mUseContentInputs) {
|
|
mSession->setNeedResize();
|
|
}
|
|
mSession->resize();
|
|
} else {
|
|
// Resize
|
|
for (int i = 0; i < inputs.size(); ++i) {
|
|
if (nullptr == mInputTensors[i]) {
|
|
continue;
|
|
}
|
|
auto exprInfo = inputs[i]->expr();
|
|
auto inside = exprInfo.first->inside();
|
|
auto inputTensor = inside->mOutputTensors[exprInfo.second];
|
|
if (nullptr != inside->mCache) {
|
|
inputTensor = Executor::getOutput(inside->mCache.get(), inside->mCacheOffset);
|
|
}
|
|
auto srcDes = TensorUtils::getDescribe(inputTensor);
|
|
auto des = TensorUtils::getDescribe(mInputTensors[i]);
|
|
des->dimensionFormat = srcDes->dimensionFormat;
|
|
mInputTensors[i]->buffer().type = inputTensor->buffer().type;
|
|
_resizeTensor(mInputTensors[i], inputTensor, mSession.get());
|
|
}
|
|
mSession->resize();
|
|
// Copy
|
|
for (int i = 0; i < inputs.size(); ++i) {
|
|
if (nullptr == mInputTensors[i]) {
|
|
continue;
|
|
}
|
|
auto exprInfo = inputs[i]->expr();
|
|
auto inside = exprInfo.first->inside();
|
|
auto inputTensor = inside->mOutputTensors[exprInfo.second];
|
|
if (nullptr != inside->mCache) {
|
|
inputTensor = Executor::getOutput(inside->mCache.get(), inside->mCacheOffset);
|
|
}
|
|
mInputTensors[i]->copyFromHostTensor(inputTensor);
|
|
}
|
|
}
|
|
ErrorCode code;
|
|
if (mResource->mModes.callBackMode == Interpreter::Session_Debug) {
|
|
auto globalExecutor = ExecutorScope::Current();
|
|
auto debug = globalExecutor->getDebugTools();
|
|
if (debug->after != nullptr && debug->before != nullptr) {
|
|
code = mSession->runWithCallBack(debug->before, debug->after);
|
|
} else {
|
|
code = mSession->run();
|
|
}
|
|
} else {
|
|
code = mSession->run();
|
|
}
|
|
if (NO_ERROR != code) {
|
|
return {};
|
|
}
|
|
for (int i = 0; i < mOutputTensors.size(); ++i) {
|
|
auto tensor = Tensor::clone(mOutputTensors[i]);
|
|
outputs[mResource->mOutputFromTensor[i]] = Express::Variable::create(Express::Expr::create(tensor, true));
|
|
}
|
|
return outputs;
|
|
}
|
|
|
|
Module* StaticModule::clone(CloneContext* ctx) const {
|
|
StaticModule* module(new StaticModule);
|
|
module->mResource = mResource;
|
|
if (mResource->mOutputFromTensor.empty()) {
|
|
return this->cloneBaseTo(ctx, module);
|
|
}
|
|
auto rt = Express::ExecutorScope::Current()->getRuntime();
|
|
Schedule::ScheduleInfo scheduleInfo;
|
|
if (nullptr != mResource->mSharedConst) {
|
|
scheduleInfo.defaultBackend = mResource->mSharedConst->defaultBackend;
|
|
scheduleInfo.allTensors = mResource->mSharedConst->allTensors;
|
|
}
|
|
auto res = Schedule::schedule(scheduleInfo, GetNet(mResource->mNetStorage->buffer()), {mResource->mConfig}, rt);
|
|
if (!res) {
|
|
return nullptr;
|
|
}
|
|
module->mSession.reset(new Session(std::move(scheduleInfo), mResource->mModes, std::move(rt)));
|
|
module->mSession->cloneExecution(mSession->getExecution());
|
|
if (scheduleInfo.validForResize && mResource->mModes.inputMode == Interpreter::Session_Input_Inside) {
|
|
module->mSession->resize(false);
|
|
}
|
|
module->mResourceBackend = mResourceBackend;
|
|
module->mBackupResourceBackend = mBackupResourceBackend;
|
|
module->mInputTensors.resize(mResource->mInputs.size());
|
|
module->mOutputTensors.resize(mResource->mOutputFromTensor.size());
|
|
for (int i = 0; i < mResource->mInputs.size(); ++i) {
|
|
module->mInputTensors[i] = module->mSession->getInput(mResource->mInputs[i].c_str());
|
|
}
|
|
for (int i = 0; i < mResource->mOutputFromTensor.size(); ++i) {
|
|
module->mOutputTensors[i] = module->mSession->getOutput(mResource->mOutputs[mResource->mOutputFromTensor[i]].c_str());
|
|
}
|
|
return this->cloneBaseTo(ctx, module);
|
|
}
|
|
|
|
} // namespace Express
|
|
} // namespace MNN
|