MNN/express/module/StaticModule.cpp

419 lines
18 KiB
C++

//
// StaticModule.cpp
// MNN
//
// Created by MNN on b'2020/09/10'.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "StaticModule.hpp"
#include <MNN/AutoTime.hpp>
#include <MNN/expr/Executor.hpp>
#include <MNN/expr/ExecutorScope.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include "Utils.hpp"
#include "core/MNNMemoryUtils.h"
#include "RuntimeAttr.hpp"
#include "core/TensorUtils.hpp"
namespace MNN {
namespace Express {
static std::shared_ptr<BufferStorage> preRearrangeWeights( // NOLINT
const MNN::Net* net, std::map<const Op*, std::pair<std::shared_ptr<Execution>, DataType>>& cache, Backend* backend, Backend* backupBackend) {
std::unique_ptr<MNN::NetT> net_table(net->UnPack());
std::map<int, std::pair<std::shared_ptr<Execution>, DataType>> exeCache;
bool isQuantModel = !net_table->extraTensorDescribe.empty();
std::vector<TensorQuantInfoT*> quantInfos;
std::vector<std::unique_ptr<Tensor>> inputTensors;
if (isQuantModel) {
quantInfos.resize(net_table->tensorName.size(), nullptr);
for (auto& tensorDes : net_table->extraTensorDescribe) {
quantInfos[tensorDes->index] = tensorDes->quantInfo.get();
}
}
for (int i = 0; i < net->oplists()->size(); ++i) {
auto op = net->oplists()->Get(i);
auto op_table = net_table->oplists[i].get();
if (op->inputIndexes() == nullptr || op->inputIndexes()->size() != 1) {
continue;
}
switch (op->type()) {
case MNN::OpType_DepthwiseConvInt8:
case MNN::OpType_ConvInt8:
case MNN::OpType_ConvolutionDepthwise:
case MNN::OpType_Convolution: {
std::shared_ptr<Execution> exe;
DataType type = DataType_DT_FLOAT;
if (isQuantModel) {
type = DataType_DT_INT8;
int inputIdx = op->inputIndexes()->Get(0);
auto inputTensor = Tensor::create({1}, halide_type_of<float>());
inputTensors.emplace_back(inputTensor);
auto& inputQuantAttr = TensorUtils::getDescribe(inputTensor)->quantAttr;
if (quantInfos[inputIdx]) {
inputQuantAttr.reset(new QuantAttr);
inputQuantAttr->scale = quantInfos[inputIdx]->scale;
inputQuantAttr->min = quantInfos[inputIdx]->min;
inputQuantAttr->max = quantInfos[inputIdx]->max;
inputQuantAttr->zero = quantInfos[inputIdx]->zero;
// Input Set float to create CastWrapExecution
// FIXME: Use better way
TensorUtils::getDescribe(inputTensor)->type = DataType_DT_FLOAT;
} else {
inputQuantAttr.reset();
}
int outputIdx = op->inputIndexes()->Get(0);
auto outputTensor = Tensor::create({1}, halide_type_of<float>());
inputTensors.emplace_back(outputTensor);
auto& outputQuantAttr = TensorUtils::getDescribe(outputTensor)->quantAttr;
if (quantInfos[outputIdx]) {
outputQuantAttr.reset(new QuantAttr);
outputQuantAttr->scale = quantInfos[outputIdx]->scale;
outputQuantAttr->min = quantInfos[outputIdx]->min;
outputQuantAttr->max = quantInfos[outputIdx]->max;
outputQuantAttr->zero = quantInfos[outputIdx]->zero;
// Output Set int8 to create Int8 Execution
// FIXME: Use better way
TensorUtils::getDescribe(outputTensor)->type = DataType_DT_INT8;
} else {
outputQuantAttr.reset();
}
if (inputQuantAttr && outputQuantAttr && op->main_as_Convolution2D()->quanParameter()) {
exe.reset(backend->onCreate({inputTensor}, {outputTensor}, op));
if (exe.get() == nullptr) {
exe.reset(backupBackend->onCreate({inputTensor}, {outputTensor}, op));
}
}
} else {
exe.reset(backend->onCreate({}, {}, op));
if (exe.get() == nullptr) {
exe.reset(backupBackend->onCreate({}, {}, op));
}
}
if (nullptr == exe) {
break;
}
if (!exe->onClone(nullptr, op, nullptr)) {
break;
}
exeCache.insert(std::make_pair(i, std::make_pair(exe, type)));
if (OpParameter_Convolution2D == op_table->main.type) {
op_table->main.AsConvolution2D()->bias.clear();
op_table->main.AsConvolution2D()->weight.clear();
if (nullptr != op_table->main.AsConvolution2D()->symmetricQuan) {
op_table->main.AsConvolution2D()->symmetricQuan->bias.clear();
op_table->main.AsConvolution2D()->symmetricQuan->weight.clear();
}
if (nullptr != op_table->main.AsConvolution2D()->quanParameter) {
op_table->main.AsConvolution2D()->quanParameter->alpha.clear();
op_table->main.AsConvolution2D()->quanParameter->buffer.clear();
}
}
break;
}
default: {
break;
}
}
}
flatbuffers::FlatBufferBuilder builder(1024);
builder.Finish(MNN::Net::Pack(builder, net_table.get()));
// Swap the raw buffer ownership.
std::shared_ptr<BufferStorage> net_storage(new BufferStorage);
net_storage->storage = builder.ReleaseRaw(net_storage->allocated_size, // NOLINT
net_storage->offset);
net = GetNet(net_storage->buffer());
for (auto& iter : exeCache) {
auto op = net->oplists()->Get(iter.first);
cache.insert(std::make_pair(op, iter.second));
}
return net_storage;
}
static void _resizeTensor(Tensor* tensor, const Tensor* dims, Session* session) {
MNN_ASSERT(nullptr != tensor);
bool dirty = false;
if (tensor->buffer().dimensions != dims->dimensions()) {
dirty = true;
} else {
for (int i = 0; i < dims->dimensions(); ++i) {
if (tensor->buffer().dim[i].extent != dims->length(i)) {
dirty = true;
break;
}
}
}
if (!dirty) {
return;
}
tensor->buffer().dimensions = (int)dims->dimensions();
for (int i = 0; i < dims->dimensions(); ++i) {
tensor->buffer().dim[i].extent = dims->length(i);
tensor->buffer().dim[i].stride = dims->stride(i);
}
session->setNeedResize();
}
StaticModule::StaticModule(const void* buffer, size_t length, const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs, std::shared_ptr<MNN::Express::Executor::RuntimeManager> rtMgr, const Module::Config& moduleconfig, bool copyOutput, std::shared_ptr<Schedule::ScheduleInfo> sharedConst) {
setType("StaticModule");
mResource.reset(new Resource);
mResource->mInputs = inputs;
mResource->mOutputs = outputs;
mResource->mSharedConst = sharedConst;
mResource->mModes.inputMode = moduleconfig.shapeMutable ? Interpreter::Session_Input_User : Interpreter::Session_Input_Inside;
mResource->mModes.outputMode = Interpreter::Session_Output_User;
std::shared_ptr<BufferStorage> net_storage;
std::map<const Op*, std::pair<std::shared_ptr<Execution>, DataType>> exeCache;
RuntimeInfo rt;;
if(nullptr == rtMgr && moduleconfig.backend != nullptr) {
ScheduleConfig sche_config;
sche_config.type = moduleconfig.backend->type;
sche_config.backendConfig = moduleconfig.backend->config;
rtMgr.reset(Executor::RuntimeManager::createRuntimeManager(sche_config));
}
const BackendConfig* userConfig = nullptr;
if (nullptr == rtMgr) {
rt = Executor::getRuntime();
} else {
mResource->mModes = rtMgr->getInside()->modes;
rt = rtMgr->getInside()->mRuntime;
userConfig = &rtMgr->getInside()->mConfig;
}
if (moduleconfig.rearrange) {
mResourceBackend.reset(rt.first.begin()->second->onCreate(userConfig));
if (mResourceBackend->type() == MNN_FORWARD_CPU) {
mBackupResourceBackend = mResourceBackend;
} else {
BackendConfig defaultConfig;
defaultConfig.flags = 4;
mBackupResourceBackend.reset(rt.second->onCreate(&defaultConfig));
}
net_storage = preRearrangeWeights(GetNet(buffer), exeCache, mResourceBackend.get(), mBackupResourceBackend.get());
buffer = net_storage->buffer();
length = net_storage->size();
} else {
net_storage.reset(new BufferStorage);
net_storage->storage = new uint8_t[length];
if (nullptr == net_storage->storage) {
MNN_ERROR("Allock Error in StaticModule's net\n");
return;
}
net_storage->allocated_size = length;
net_storage->offset = 0;
::memcpy(net_storage->storage, buffer, length);
buffer = net_storage->storage;
}
mResource->mNetStorage = std::move(net_storage);
mResource->mOutputNumbers = (int)outputs.size();
/** Compute:
std::vector<int, int> mOutputFromTensor;
std::vector<int, int> mOutputFromInput;
*/
for (int i = 0; i < outputs.size(); ++i) {
auto& t = outputs[i];
bool fromInput = false;
for (int j = 0; j < inputs.size(); ++j) {
if (inputs[j] == t) {
fromInput = true;
mResource->mOutputFromInput.emplace_back(std::make_pair(i, j));
break;
}
}
if (fromInput) {
continue;
}
mResource->mOutputFromTensor.emplace_back(i);
}
if (mResource->mOutputFromTensor.empty()) {
return;
}
// TODO: Add Config
mResource->mConfig.numThread = 1;
mResource->mConfig.type = rt.first.begin()->first;
mResource->mConfig.path.mode = ScheduleConfig::Path::Mode::Tensor;
mResource->mConfig.path.outputs = outputs;
mResource->mConfig.saveTensors = outputs;
mResource->mConfig.path.inputs = inputs;
mResource->mConfig.backendConfig = (BackendConfig*)userConfig;
Schedule::ScheduleInfo scheduleInfo;
// Copy Const
if (nullptr != mResource->mSharedConst) {
scheduleInfo.defaultBackend = mResource->mSharedConst->defaultBackend;
scheduleInfo.allTensors = mResource->mSharedConst->allTensors;
}
// Schedule
auto res = Schedule::schedule(scheduleInfo, GetNet(buffer), {mResource->mConfig}, rt);
if (!res) {
return;
}
mResource->mUseContentInputs = scheduleInfo.needInputContentForShape;
if (mResource->mUseContentInputs) {
mResource->mModes.inputMode = Interpreter::Session_Input_User;
}
mSession.reset(new Session(std::move(scheduleInfo), mResource->mModes, std::move(rt)));
mSession->cloneExecution(exeCache);
if (scheduleInfo.validForResize && mResource->mModes.inputMode == Interpreter::Session_Input_Inside) {
mSession->resize(false);
}
mInputTensors.resize(inputs.size());
for (int i = 0; i < inputs.size(); ++i) {
mInputTensors[i] = mSession->getInput(inputs[i].c_str());
}
mOutputTensors.resize(mResource->mOutputFromTensor.size());
for (int i = 0; i < mResource->mOutputFromTensor.size(); ++i) {
mOutputTensors[i] = mSession->getOutput(outputs[mResource->mOutputFromTensor[i]].c_str());
}
}
StaticModule::~StaticModule() {
mSession = nullptr;
mResourceBackend = nullptr;
mBackupResourceBackend = nullptr;
}
std::vector<Express::VARP> StaticModule::onForward(const std::vector<Express::VARP>& inputs) {
AUTOTIME;
std::vector<Express::VARP> outputs(mResource->mOutputNumbers);
for (auto& iter : mResource->mOutputFromInput) {
outputs[iter.first] = inputs[iter.second];
}
if (mResource->mOutputFromTensor.empty()) {
return outputs;
}
Variable::compute(inputs);
#ifdef MNN_DUMP_MEMORY
auto rt = Executor::getRuntime();
auto mem = rt.second->onGetMemoryInMB();
for (auto iter : rt.first) {
if (iter.second.get() != rt.second.get()) {
mem += iter.second->onGetMemoryInMB();
}
}
FUNC_PRINT_ALL(mem, f);
#endif
MNN_ASSERT(inputs.size() == mInputTensors.size());
if (mResource->mModes.inputMode == Interpreter::Session_Input_User) {
for (int i = 0; i < inputs.size(); ++i) {
if (nullptr == mInputTensors[i]) {
continue;
}
auto exprInfo = inputs[i]->expr();
auto inside = exprInfo.first->inside();
auto inputTensor = inside->mOutputTensors[exprInfo.second];
if (nullptr != inside->mCache) {
inputTensor = Executor::getOutput(inside->mCache.get(), inside->mCacheOffset);
}
auto srcDes = TensorUtils::getDescribe(inputTensor);
auto des = TensorUtils::getDescribe(mInputTensors[i]);
des->quantAttr = srcDes->quantAttr;
des->type = srcDes->type;
des->dimensionFormat = srcDes->dimensionFormat;
des->tensorArrayAttr = srcDes->tensorArrayAttr;
des->backend = srcDes->backend;
mInputTensors[i]->buffer().type = inputTensor->buffer().type;
_resizeTensor(mInputTensors[i], inputTensor, mSession.get());
if (mInputTensors[i]->buffer().host != inputTensor->buffer().host || mInputTensors[i]->buffer().device != inputTensor->buffer().device) {
mSession->setNeedMalloc();
}
mInputTensors[i]->buffer().host = inputTensor->buffer().host;
mInputTensors[i]->buffer().device = inputTensor->buffer().device;
}
if (mResource->mUseContentInputs) {
mSession->setNeedResize();
}
mSession->resize();
} else {
// Resize
for (int i = 0; i < inputs.size(); ++i) {
if (nullptr == mInputTensors[i]) {
continue;
}
auto exprInfo = inputs[i]->expr();
auto inside = exprInfo.first->inside();
auto inputTensor = inside->mOutputTensors[exprInfo.second];
if (nullptr != inside->mCache) {
inputTensor = Executor::getOutput(inside->mCache.get(), inside->mCacheOffset);
}
auto srcDes = TensorUtils::getDescribe(inputTensor);
auto des = TensorUtils::getDescribe(mInputTensors[i]);
des->dimensionFormat = srcDes->dimensionFormat;
mInputTensors[i]->buffer().type = inputTensor->buffer().type;
_resizeTensor(mInputTensors[i], inputTensor, mSession.get());
}
mSession->resize();
// Copy
for (int i = 0; i < inputs.size(); ++i) {
if (nullptr == mInputTensors[i]) {
continue;
}
auto exprInfo = inputs[i]->expr();
auto inside = exprInfo.first->inside();
auto inputTensor = inside->mOutputTensors[exprInfo.second];
if (nullptr != inside->mCache) {
inputTensor = Executor::getOutput(inside->mCache.get(), inside->mCacheOffset);
}
mInputTensors[i]->copyFromHostTensor(inputTensor);
}
}
ErrorCode code;
if (mResource->mModes.callBackMode == Interpreter::Session_Debug) {
auto globalExecutor = ExecutorScope::Current();
auto debug = globalExecutor->getDebugTools();
if (debug->after != nullptr && debug->before != nullptr) {
code = mSession->runWithCallBack(debug->before, debug->after);
} else {
code = mSession->run();
}
} else {
code = mSession->run();
}
if (NO_ERROR != code) {
return {};
}
for (int i = 0; i < mOutputTensors.size(); ++i) {
auto tensor = Tensor::clone(mOutputTensors[i]);
outputs[mResource->mOutputFromTensor[i]] = Express::Variable::create(Express::Expr::create(tensor, true));
}
return outputs;
}
Module* StaticModule::clone(CloneContext* ctx) const {
StaticModule* module(new StaticModule);
module->mResource = mResource;
if (mResource->mOutputFromTensor.empty()) {
return this->cloneBaseTo(ctx, module);
}
auto rt = Express::ExecutorScope::Current()->getRuntime();
Schedule::ScheduleInfo scheduleInfo;
if (nullptr != mResource->mSharedConst) {
scheduleInfo.defaultBackend = mResource->mSharedConst->defaultBackend;
scheduleInfo.allTensors = mResource->mSharedConst->allTensors;
}
auto res = Schedule::schedule(scheduleInfo, GetNet(mResource->mNetStorage->buffer()), {mResource->mConfig}, rt);
if (!res) {
return nullptr;
}
module->mSession.reset(new Session(std::move(scheduleInfo), mResource->mModes, std::move(rt)));
module->mSession->cloneExecution(mSession->getExecution());
if (scheduleInfo.validForResize && mResource->mModes.inputMode == Interpreter::Session_Input_Inside) {
module->mSession->resize(false);
}
module->mResourceBackend = mResourceBackend;
module->mBackupResourceBackend = mBackupResourceBackend;
module->mInputTensors.resize(mResource->mInputs.size());
module->mOutputTensors.resize(mResource->mOutputFromTensor.size());
for (int i = 0; i < mResource->mInputs.size(); ++i) {
module->mInputTensors[i] = module->mSession->getInput(mResource->mInputs[i].c_str());
}
for (int i = 0; i < mResource->mOutputFromTensor.size(); ++i) {
module->mOutputTensors[i] = module->mSession->getOutput(mResource->mOutputs[mResource->mOutputFromTensor[i]].c_str());
}
return this->cloneBaseTo(ctx, module);
}
} // namespace Express
} // namespace MNN