mirror of https://github.com/alibaba/MNN.git
48 lines
1.5 KiB
Python
48 lines
1.5 KiB
Python
# Copyright @ 2019 Alibaba. All rights reserved.
|
|
""" python demo usage about MNN API """
|
|
from __future__ import print_function
|
|
import numpy as np
|
|
import MNN
|
|
import sys
|
|
import cv2
|
|
|
|
def inference():
|
|
""" inference mobilenet_v1 using a specific picture """
|
|
|
|
config = {}
|
|
config['precision'] = 'low'
|
|
config['backend'] = 3
|
|
config['numThread'] = 4
|
|
|
|
rt = MNN.nn.create_runtime_manager((config,))
|
|
rt.set_cache(".cachefile")
|
|
# set_mode(type) //type 9 for "auto_backend"
|
|
rt.set_mode(9)
|
|
# set_hint(type, value) //type 0 for "tune_num"
|
|
rt.set_hint(0, 20)
|
|
|
|
net = MNN.nn.load_module_from_file(sys.argv[1], ["input"], ["MobilenetV1/Predictions/Reshape_1"], runtime_manager=rt)
|
|
|
|
image = cv2.imread(sys.argv[2])
|
|
#cv2 read as bgr format
|
|
image = image[..., ::-1]
|
|
#change to rgb format
|
|
image = cv2.resize(image, (224, 224))
|
|
#resize to mobile_net tensor size
|
|
image = image - (103.94, 116.78, 123.68)
|
|
image = image * (0.017, 0.017, 0.017)
|
|
#change numpy data type as np.float32 to match tensor's format
|
|
image = image.astype(np.float32)
|
|
input_var = MNN.expr.placeholder([1, 224, 224, 3], MNN.expr.NHWC)
|
|
input_var.write(image)
|
|
input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4)
|
|
#inference
|
|
output_var = net.forward(input_var)
|
|
output_var = MNN.expr.convert(output_var, MNN.expr.NHWC)
|
|
print("expect 983")
|
|
print("output belong to class: {}".format(np.argmax(output_var.read())))
|
|
|
|
rt.update_cache()
|
|
if __name__ == "__main__":
|
|
inference()
|