MNN/pymnn/examples/MNNExpr/mobilenet_demo.py

37 lines
1.3 KiB
Python

# Copyright @ 2019 Alibaba. All rights reserved.
# Created by ruhuan on 2019.09.09
""" python demo usage about MNN API """
from __future__ import print_function
import numpy as np
import MNN
import cv2
import sys
def inference():
""" inference mobilenet_v1 using a specific picture """
net = MNN.nn.load_module_from_file(sys.argv[1], ["input"], ["MobilenetV1/Predictions/Reshape_1"])
image = cv2.imread(sys.argv[2])
#cv2 read as bgr format
image = image[..., ::-1]
#change to rgb format
image = cv2.resize(image, (224, 224))
#resize to mobile_net tensor size
image = image - (103.94, 116.78, 123.68)
image = image * (0.017, 0.017, 0.017)
#change numpy data type as np.float32 to match tensor's format
image = image.astype(np.float32)
#Make var to save numpy
input_var = MNN.expr.placeholder([1, 224, 224, 3], MNN.expr.NHWC)
input_var.write(image)
#cv2 read shape is NHWC, Module's need is NC4HW4, convert it
input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4)
#inference
output_var = net.forward(input_var)
#the output from net may be NC4HW4, turn to linear layout
output_var = MNN.expr.convert(output_var, MNN.expr.NHWC)
print("expect 983")
print("output belong to class: {}".format(np.argmax(output_var.read())))
if __name__ == "__main__":
inference()