mirror of https://github.com/alibaba/MNN.git
297 lines
12 KiB
C++
297 lines
12 KiB
C++
//
|
|
// CPUResize.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/07/17.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/cpu/CPUResize.hpp"
|
|
#include <math.h>
|
|
#include "core/AutoStorage.h"
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "core/Concurrency.h"
|
|
#include "core/Macro.h"
|
|
#include "math/Vec.hpp"
|
|
using Vec4 = MNN::Math::Vec<float, 4>;
|
|
|
|
extern "C" {
|
|
void MNNCubicSampleC4(const float* src, float* dst, int32_t* position, const float* factor, size_t number);
|
|
void MNNCubicLineC4(float* dst, const float* A, const float* B, const float* C, const float* D, float* t,
|
|
size_t number);
|
|
}
|
|
using namespace MNN::Math;
|
|
namespace MNN {
|
|
|
|
static void CPUBilinearSampleC4(const float* src, float* dst, const int32_t* position, const float* factor,
|
|
size_t number) {
|
|
for (int i = 0; i < number; ++i) {
|
|
float f = factor[i];
|
|
Vec4 df(f);
|
|
Vec4 sf(1.0f - f);
|
|
Vec4 A = Vec4::load(src + position[2 * i] * 4);
|
|
Vec4 B = Vec4::load(src + position[2 * i + 1] * 4);
|
|
Vec4::save(dst + 4 * i, B * df + A * sf);
|
|
}
|
|
}
|
|
|
|
static void CPUBilinearLineC4(float* dst, const float* A, const float* B, const float* t, size_t number) {
|
|
Vec4 df(*t);
|
|
Vec4 sf(1.0f - *t);
|
|
for (int i = 0; i < number; ++i) {
|
|
Vec4 value = Vec4::load(A + 4 * i) * sf + Vec4::load(B + 4 * i) * df;
|
|
Vec4::save(dst + 4 * i, value);
|
|
}
|
|
}
|
|
|
|
static int CLAMP(int v, int min, int max) {
|
|
if ((v) < min) {
|
|
(v) = min;
|
|
} else if ((v) > max) {
|
|
(v) = max;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
void CPUResizeCommon::CPUResizeCubicC4(halide_buffer_t &input, halide_buffer_t &output, float xFactor, float yFactor, float wOffset, float hOffset) {
|
|
const int batches = input.dim[0].extent;
|
|
const int inBatchSize = input.dim[0].stride;
|
|
const int outBatchSize = output.dim[0].stride;
|
|
const int inW = input.dim[3].extent;
|
|
const int inH = input.dim[2].extent;
|
|
const int N = input.dim[1].extent;
|
|
const int outW = output.dim[3].extent;
|
|
const int outH = output.dim[2].extent;
|
|
const int depthQuad = UP_DIV(N, 4);
|
|
|
|
AutoStorage<int> linePosition(4 * outW);
|
|
AutoStorage<float> lineFactor(outW);
|
|
auto _linePosition = linePosition.get();
|
|
auto _lineFactor = lineFactor.get();
|
|
|
|
// Compute Line Position
|
|
for (int dx = 0; dx < outW; ++dx) {
|
|
float x = (float)dx * xFactor + wOffset;
|
|
int xInt = (int)x;
|
|
_lineFactor[dx] = (float)(x - floor(x));
|
|
_linePosition[4 * dx + 0] = CLAMP(xInt - 1, 0, inW - 1);
|
|
_linePosition[4 * dx + 1] = CLAMP(xInt + 0, 0, inW - 1);
|
|
_linePosition[4 * dx + 2] = CLAMP(xInt + 1, 0, inW - 1);
|
|
_linePosition[4 * dx + 3] = CLAMP(xInt + 2, 0, inW - 1);
|
|
}
|
|
|
|
for (int b = 0; b < batches; ++b) {
|
|
MNN_CONCURRENCY_BEGIN(n, depthQuad);
|
|
{
|
|
int yUsed[4] = {0, 0, 0, 0};
|
|
int yCache[4] = {-1, -1, -1, -1};
|
|
|
|
AutoStorage<float> lineBuffer(16 * outW);
|
|
auto _lineBuffer = lineBuffer.get();
|
|
auto _line0 = _lineBuffer + 4 * outW * 0;
|
|
auto _line1 = _lineBuffer + 4 * outW * 1;
|
|
auto _line2 = _lineBuffer + 4 * outW * 2;
|
|
auto _line3 = _lineBuffer + 4 * outW * 3;
|
|
float* yCacheLine[4] = {_line0, _line1, _line2, _line3};
|
|
float* const yCacheStorage[4] = {_line0, _line1, _line2, _line3};
|
|
auto bottomData = reinterpret_cast<const float*>(input.host) + b * inBatchSize + (int)n * 4 * inW * inH;
|
|
auto topData = reinterpret_cast<float*>(output.host) + b * outBatchSize + (int)n * 4 * outW * outH;
|
|
for (int dy = 0; dy < outH; dy++) {
|
|
float y = (float)dy * yFactor + hOffset;
|
|
int yInt = (int)y;
|
|
int yp[4];
|
|
yp[0] = CLAMP(yInt - 1, 0, inH - 1);
|
|
yp[1] = CLAMP(yInt, 0, inH - 1);
|
|
yp[2] = CLAMP(yInt + 1, 0, inH - 1);
|
|
yp[3] = CLAMP(yInt + 2, 0, inH - 1);
|
|
// Search cache
|
|
for (int j = 0; j < 4; ++j) {
|
|
yUsed[j] = 0;
|
|
}
|
|
for (int j = 0; j < 4; ++j) {
|
|
int find = 0;
|
|
for (int k = 0; k < 4; ++k) {
|
|
if (yp[j] == yCache[k]) {
|
|
yUsed[k] = 1;
|
|
yCacheLine[j] = yCacheStorage[k];
|
|
find = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!find) {
|
|
const float* bottomY0 = bottomData + yp[j] * inW * 4;
|
|
for (int k = 0; k < 4; ++k) {
|
|
if (!yUsed[k]) {
|
|
yCache[k] = yp[j];
|
|
yUsed[k] = 1;
|
|
yCacheLine[j] = yCacheStorage[k];
|
|
MNNCubicSampleC4(bottomY0, yCacheLine[j], _linePosition, _lineFactor, outW);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sample Input
|
|
float yFract = (float)(y - floor(y));
|
|
auto topY = topData + outW * 4 * dy;
|
|
MNNCubicLineC4(topY, yCacheLine[0], yCacheLine[1], yCacheLine[2], yCacheLine[3], &yFract, outW);
|
|
}
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
}
|
|
}
|
|
|
|
void CPUResizeCommon::CPUResizeBilinearC4(halide_buffer_t& input, halide_buffer_t& output, const int* widthPosition,
|
|
const float* widthFactor, const int* heightPosition,
|
|
const float* heightFactor, float* lineBuffer, int threadNumber) {
|
|
const int batches = input.dim[0].extent;
|
|
const int inputBatchSize = input.dim[0].stride;
|
|
const int outputBatchSize = output.dim[0].stride;
|
|
const int inW = input.dim[3].extent;
|
|
const int inH = input.dim[2].extent;
|
|
const int outW = output.dim[3].extent;
|
|
const int outH = output.dim[2].extent;
|
|
|
|
int depthQuad = UP_DIV(input.dim[1].extent, 4) * batches;
|
|
|
|
auto threadFunction = [&](size_t tId) {
|
|
for (int n = (int)tId; n < depthQuad; n += threadNumber) {
|
|
auto _lineBuffer = lineBuffer + 2 * 4 * outW * tId;
|
|
auto _line0 = _lineBuffer + 4 * outW * 0;
|
|
auto _line1 = _lineBuffer + 4 * outW * 1;
|
|
int yUsed[2] = {0, 0};
|
|
int yCache[2] = {-1, -1};
|
|
|
|
float* yCacheLine[2] = {_line0, _line1};
|
|
float* const yCacheStorage[2] = {_line0, _line1};
|
|
|
|
auto bottomData =
|
|
reinterpret_cast<const float*>(input.host) + (int)n * 4 * inW * inH;
|
|
auto topData = reinterpret_cast<float*>(output.host) + (int)n * 4 * outW * outH;
|
|
for (int dy = 0; dy < outH; dy++) {
|
|
int yp[2];
|
|
yp[0] = heightPosition[2 * dy + 0];
|
|
yp[1] = heightPosition[2 * dy + 1];
|
|
// Search cache
|
|
for (int j = 0; j < 2; ++j) {
|
|
yUsed[j] = 0;
|
|
}
|
|
for (int j = 0; j < 2; ++j) {
|
|
int find = 0;
|
|
for (int k = 0; k < 2; ++k) {
|
|
if (yp[j] == yCache[k]) {
|
|
yUsed[k] = 1;
|
|
yCacheLine[j] = yCacheStorage[k];
|
|
find = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!find) {
|
|
const float* bottomY0 = bottomData + yp[j] * inW * 4;
|
|
for (int k = 0; k < 2; ++k) {
|
|
if (!yUsed[k]) {
|
|
yCache[k] = yp[j];
|
|
yUsed[k] = 1;
|
|
yCacheLine[j] = yCacheStorage[k];
|
|
CPUBilinearSampleC4(bottomY0, yCacheLine[j], widthPosition, widthFactor, outW);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
auto topY = topData + outW * 4 * dy;
|
|
// Sample Input
|
|
CPUBilinearLineC4(topY, yCacheLine[0], yCacheLine[1], &heightFactor[dy], outW);
|
|
}
|
|
}
|
|
};
|
|
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
|
|
threadFunction(tId);
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
}
|
|
|
|
void CPUResizeCommon::CPUResizeNearestneighborRoundC4(halide_buffer_t &input, halide_buffer_t &output, float wScale, float hScale, float wOffset, float hOffset) {
|
|
const int batches = input.dim[0].extent;
|
|
const int inputBatchSize = input.dim[0].stride;
|
|
const int outputBatchSize = output.dim[0].stride;
|
|
const int inW = input.dim[3].extent;
|
|
const int inH = input.dim[2].extent;
|
|
const int outW = output.dim[3].extent;
|
|
const int outH = output.dim[2].extent;
|
|
const float xScaling = wScale;
|
|
const float yScaling = hScale;
|
|
const int depthQuad = UP_DIV(input.dim[1].extent, 4);
|
|
|
|
AutoStorage<int> linePosition(outW);
|
|
auto _linePosition = linePosition.get();
|
|
for (int x = 0; x < outW; ++x) {
|
|
float src_x = x * xScaling + wOffset;
|
|
int x1 = static_cast<int>(floorf(src_x + 0.499f));
|
|
_linePosition[x] = CLAMP(x1, 0, inW - 1);
|
|
}
|
|
|
|
for (int b = 0; b < batches; ++b) {
|
|
MNN_CONCURRENCY_BEGIN(n, depthQuad) {
|
|
auto srcData =
|
|
reinterpret_cast<const float*>(input.host) + b * inputBatchSize + static_cast<int>(n) * 4 * inW * inH;
|
|
auto dstData =
|
|
reinterpret_cast<float*>(output.host) + b * outputBatchSize + static_cast<int>(n) * 4 * outW * outH;
|
|
for (int dy = 0; dy < outH; ++dy) {
|
|
float srcY = dy * yScaling + hOffset;
|
|
const int y_ = CLAMP(static_cast<int>(floorf(srcY + 0.499f)), 0, inH - 1);
|
|
auto srcDataLine = srcData + inW * 4 * y_;
|
|
auto dstDataLine = dstData + outW * 4 * dy;
|
|
for (int dx = 0; dx < outW; ++dx) {
|
|
::memcpy(dstDataLine + dx * 4, srcDataLine + _linePosition[dx] * 4, sizeof(float) * 4);
|
|
}
|
|
}
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
}
|
|
}
|
|
|
|
void CPUResizeCommon::CPUResizeNearestneighborC4(halide_buffer_t& input, halide_buffer_t& output,
|
|
float wScale, float hScale, float wOffset, float hOffset) {
|
|
const int batches = input.dim[0].extent;
|
|
const int inputBatchSize = input.dim[0].stride;
|
|
const int outputBatchSize = output.dim[0].stride;
|
|
const int inW = input.dim[3].extent;
|
|
const int inH = input.dim[2].extent;
|
|
const int outW = output.dim[3].extent;
|
|
const int outH = output.dim[2].extent;
|
|
const float xScaling = wScale;
|
|
const float yScaling = hScale;
|
|
const int depthQuad = UP_DIV(input.dim[1].extent, 4);
|
|
|
|
AutoStorage<int> linePosition(outW);
|
|
auto _linePosition = linePosition.get();
|
|
for (int x = 0; x < outW; ++x) {
|
|
float src_x = x * xScaling + wOffset;
|
|
int x1 = static_cast<int>(floor(src_x));
|
|
_linePosition[x] = CLAMP(x1, 0, inW - 1);
|
|
}
|
|
|
|
for (int b = 0; b < batches; ++b) {
|
|
MNN_CONCURRENCY_BEGIN(n, depthQuad) {
|
|
auto srcData =
|
|
reinterpret_cast<const float*>(input.host) + b * inputBatchSize + static_cast<int>(n) * 4 * inW * inH;
|
|
auto dstData =
|
|
reinterpret_cast<float*>(output.host) + b * outputBatchSize + static_cast<int>(n) * 4 * outW * outH;
|
|
for (int dy = 0; dy < outH; ++dy) {
|
|
float srcY = dy * yScaling + hOffset;
|
|
const int y_ = CLAMP(static_cast<int>(floor(srcY)), 0, inH - 1);
|
|
auto srcDataLine = srcData + inW * 4 * y_;
|
|
auto dstDataLine = dstData + outW * 4 * dy;
|
|
for (int dx = 0; dx < outW; ++dx) {
|
|
::memcpy(dstDataLine + dx * 4, srcDataLine + _linePosition[dx] * 4, sizeof(float) * 4);
|
|
}
|
|
}
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
}
|
|
}
|
|
|
|
} // namespace MNN
|