MNN/express/module/PipelineModule.cpp

762 lines
30 KiB
C++

//
// PipelineModule.cpp
// MNN
//
// Created by MNN on 2020/01/09.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "PipelineModule.hpp"
#include "MNN_generated.h"
#include <set>
#include <vector>
#include "StaticModule.hpp"
#include "IfModule.hpp"
#include "WhileModule.hpp"
using namespace MNN::Express;
namespace MNN {
namespace Express {
//#define DYNAMIC
#define PIPELINE_MODULE "_pipeline_module__"
class ExprModule : public Module {
public:
ExprModule(EXPRP expr) {
mExpr = expr;
setName(expr->name());
mInputs = expr->inputs();
auto op = mExpr->get();
if (op) {
auto typeName = EnumNameOpType(op->type());
setType(typeName);
}
for (int i = 0; i < mInputs.size(); ++i) {
auto inputExpr = mInputs[i]->expr().first;
if (inputExpr->get() != nullptr) {
mInputs[i] = nullptr;
mInputIndexes.emplace_back(i);
continue;
}
switch (inputExpr->inputType()) {
case VARP::INPUT:
mInputs[i] = nullptr;
mInputIndexes.emplace_back(i);
break;
case VARP::CONSTANT:
break;
case VARP::TRAINABLE:
addParameter(mInputs[i]);
break;
default:
break;
}
}
}
virtual std::vector<VARP> onForward(const std::vector<VARP>& inputs) override {
MNN_ASSERT(mInputIndexes.size() == inputs.size());
if (nullptr == mExpr->get()) {
return {Variable::create(mExpr)};
}
std::vector<VARP> tempInputs = mInputs;
for (int i = 0; i < inputs.size(); ++i) {
tempInputs[mInputIndexes[i]] = inputs[i];
}
std::vector<VARP> outputVars;
auto newExpr = Expr::create(mExpr->extra(), std::move(tempInputs), mExpr->outputSize());
newExpr->setName(mExpr->name());
for (int i = 0; i < mExpr->outputSize(); ++i) {
outputVars.emplace_back(Variable::create(newExpr, i));
}
return outputVars;
}
const std::vector<int>& inputIndexes() const {
return mInputIndexes;
}
private:
Module* clone(CloneContext* ctx) const override {
ExprModule* module(new ExprModule(ctx->getOrClone(mExpr)));
for (const VARP& var : mInputs) {
module->mInputs.push_back(ctx->getOrClone(var));
}
module->mInputIndexes = mInputIndexes;
return this->cloneBaseTo(ctx, module);
}
EXPRP mExpr;
std::vector<VARP> mInputs;
std::vector<int> mInputIndexes;
};
Module* PipelineModule::extract(std::vector<Express::VARP> inputs, std::vector<Express::VARP> outputs, bool fortrain, const std::map<std::string, SubGraph>& subGraph) {
std::function<std::pair<std::vector<int>, std::shared_ptr<Module>>(EXPRP)> transformFunction;
if (fortrain) {
transformFunction =
[&subGraph](EXPRP source) {
if (source->get() == nullptr) {
return std::make_pair(std::vector<int>{}, std::shared_ptr<Module>(nullptr));
}
std::shared_ptr<Module> m(NN::Utils::ExtractNotRunableOp(source, subGraph));
if (nullptr != m) {
m->setName(source->name());
return std::make_pair(std::vector<int>{}, m);
}
auto convExtracted = NN::Utils::ExtractConvolution(source);
if (convExtracted.weight == nullptr) {
return std::make_pair(std::vector<int>{}, std::shared_ptr<Module>(nullptr));
}
std::shared_ptr<Module> module(NN::Conv(convExtracted));
module->setName(source->name());
return std::make_pair(std::vector<int>{0}, module);
};
} else {
transformFunction = [&subGraph](EXPRP source) {
if (source->get() == nullptr) {
return std::make_pair(std::vector<int>{}, std::shared_ptr<Module>(nullptr));
}
std::shared_ptr<Module> m(NN::Utils::ExtractNotRunableOp(source, subGraph));
if (nullptr != m) {
m->setName(source->name());
return std::make_pair(std::vector<int>{}, m);
}
return std::make_pair(std::vector<int>{}, std::shared_ptr<Module>(nullptr));
};
}
return new PipelineModule(inputs, outputs, transformFunction);
}
PipelineModule::PipelineModule(std::vector<VARP> inputs, std::vector<VARP> outputs, const Transformer& transformFunction) {
setType(PIPELINE_MODULE);
std::vector<EXPRP> executeOrder;
std::set<EXPRP> inputExpr;
for (auto v : inputs) {
inputExpr.insert(v->expr().first);
}
for (auto output : outputs) {
Expr::visit(output->expr().first,
[&executeOrder, &inputExpr](EXPRP expr) {
if (expr->visited()) {
return false;
}
if (inputExpr.find(expr)!= inputExpr.end()) {
expr->setVisited(true);
executeOrder.emplace_back(expr);
return false;
}
return true;
},
[&executeOrder](EXPRP expr) {
//FUNC_PRINT_ALL(var->name().c_str(), s);
if (!expr->visited()) {
executeOrder.emplace_back(expr);
expr->setVisited(true);
}
return true;
});
}
for (auto expr : executeOrder) {
expr->setVisited(false);
}
// Set Indexes
std::map<EXPRP, int> indexes;
int currentIndexes = 0;
for (auto expr : executeOrder) {
indexes[expr] = currentIndexes;
currentIndexes += expr->outputSize();
}
std::set<EXPRP> inputSets;
mInputIndexes.clear();
mStackSize = currentIndexes;
for (auto v : inputs) {
auto inputExpr = v->expr();
mInputIndexes.emplace_back(indexes[inputExpr.first] + inputExpr.second);
inputSets.insert(inputExpr.first);
}
// Create All SubModule
for (auto expr : executeOrder) {
if (inputSets.find(expr) != inputSets.end()) {
continue;
}
std::pair<std::vector<int>, std::shared_ptr<Module> > moduleResult;
bool extracted = false;
if (!transformFunction) {
moduleResult = std::make_pair(std::vector<int>{}, std::shared_ptr<Module>(nullptr));
} else {
moduleResult = transformFunction(expr);
}
if (moduleResult.second == nullptr) {
std::shared_ptr<Module> module(new ExprModule(expr));
moduleResult.first = ((ExprModule*)module.get())->inputIndexes();
moduleResult.second = module;
} else {
extracted = true;
}
auto subInputs = expr->inputs();
auto& exprInputIndexes = moduleResult.first;
std::vector<int> inputIndexes;
if (exprInputIndexes.empty() && extracted) {
inputIndexes.resize(subInputs.size());
for (int i = 0; i < inputIndexes.size(); ++i) {
auto inputExpr = subInputs[i]->expr();
inputIndexes[i] = indexes[inputExpr.first] + inputExpr.second;
}
} else {
inputIndexes.resize(exprInputIndexes.size());
for (int i = 0; i < inputIndexes.size(); ++i) {
auto inputExpr = subInputs[exprInputIndexes[i]]->expr();
inputIndexes[i] = indexes[inputExpr.first] + inputExpr.second;
}
}
std::vector<int> outputIndexes(expr->outputSize());
for (int i = 0; i < outputIndexes.size(); ++i) {
outputIndexes[i] = indexes[expr] + i;
}
mSubModules.emplace_back(std::make_tuple(moduleResult.second, inputIndexes, outputIndexes));
registerModel({moduleResult.second});
}
mOutputIndexes.clear();
for (auto output : outputs) {
auto outputExpr = output->expr();
mOutputIndexes.emplace_back(indexes[outputExpr.first] + outputExpr.second);
}
}
bool PipelineModule::turnQuantize(Module* module, const int bit, NN::FeatureScaleStatMethod featureScaleStatMethod, NN::ScaleUpdateMethod scaleUpdateMethod) {
if (nullptr == module || module->type() != PIPELINE_MODULE) {
MNN_ERROR("Invalide module for quantized\n");
return false;
}
((PipelineModule*)module)->toTrainQuant(bit, featureScaleStatMethod, scaleUpdateMethod);
return true;
}
std::vector<int> PipelineModule::countOutputReference(std::vector<int> outputIndices) {
MNN_ASSERT(outputIndices.size() > 0);
std::vector<int> countResult(outputIndices.size(), 0);
for (int i = 0; i < mSubModules.size(); i++) {
auto &m = mSubModules[i];
auto& theModule = std::get<0>(m);
auto name = theModule->name();
auto &inputIndices = std::get<1>(m);
for (int j = 0; j < inputIndices.size(); j++) {
int index = inputIndices[j];
for (int k = 0; k < countResult.size(); k++) {
if (index == outputIndices[k]) {
countResult[k]++;
}
}
}
}
return countResult;
}
void PipelineModule::toTrainQuant(const int bits, NN::FeatureScaleStatMethod featureScaleStatMethod,
NN::ScaleUpdateMethod scaleUpdateMethod) {
std::vector<int> needEraseIndices;
for (int i = 0; i < mSubModules.size(); i++) {
auto& m = mSubModules[i];
auto& theModule = std::get<0>(m);
auto moduleType = theModule->type();
//auto& inputIndices = std::get<1>(m);
auto& outputIndices = std::get<2>(m);
if (moduleType == "Conv" && i < mSubModules.size() - 1) {
auto& p1 = mSubModules[i+1];
auto p1Module = std::get<0>(p1);
auto& p1ModuleType = p1Module->type();
auto& p1InputIndices = std::get<1>(p1);
auto& p1OutputIndices = std::get<2>(p1);
auto convOutputCount = countOutputReference(outputIndices);
bool convSingleOutputReference = ((outputIndices.size() == 1) && (convOutputCount[0] == 1));
// only conv
if ((!convSingleOutputReference) || (p1ModuleType == "Conv") ||
(p1ModuleType != "BatchNorm" && p1ModuleType != "ReLU" && p1ModuleType != "ReLU6")) {
theModule.reset(NN::ConvBNReluFused({theModule}, featureScaleStatMethod, scaleUpdateMethod, bits));
registerModel({theModule});
continue;
}
// conv + bn + ?
if (p1ModuleType == "BatchNorm") {
bool convBnConnected = ((convSingleOutputReference) && (p1InputIndices.size() == 1) && (p1InputIndices[0] == outputIndices[0]));
if (!convBnConnected) {
theModule.reset(NN::ConvBNReluFused({theModule}, featureScaleStatMethod, scaleUpdateMethod, bits));
registerModel({theModule});
continue;
}
// last conv + bn
if (i == mSubModules.size() - 2) {
theModule.reset(NN::ConvBNReluFused({theModule, p1Module}, featureScaleStatMethod, scaleUpdateMethod, bits));
registerModel({theModule});
outputIndices = p1OutputIndices;
needEraseIndices.emplace_back(i + 1);
continue;
}
// maybe there is a relu or relu6 after conv + bn
auto& p2 = mSubModules[i+2];
auto& p2Module = std::get<0>(p2);
auto p2ModuleType = p2Module->type();
auto& p2InputIndices = std::get<1>(p2);
auto& p2OutputIndices = std::get<2>(p2);
auto bnOutputCount = countOutputReference(p1OutputIndices);
bool bnSingleOutputReference = ((p1OutputIndices.size() == 1) && (bnOutputCount[0] == 1));
// only conv + bn
if ((!bnSingleOutputReference) || (p2ModuleType != "ReLU" && p2ModuleType != "ReLU6")) {
theModule.reset(NN::ConvBNReluFused({theModule, p1Module}, featureScaleStatMethod, scaleUpdateMethod, bits));
registerModel({theModule});
outputIndices = p1OutputIndices;
needEraseIndices.emplace_back(i + 1);
continue;
} else { // conv + bn + relu or conv + bn + relu6
bool convBnReluConnected = ((bnSingleOutputReference) && (p2InputIndices.size() == 1) && (p2InputIndices[0] == p1OutputIndices[0]));
if (!convBnReluConnected) {
theModule.reset(NN::ConvBNReluFused({theModule, p1Module}, featureScaleStatMethod, scaleUpdateMethod, bits));
registerModel({theModule});
outputIndices = p1OutputIndices;
needEraseIndices.emplace_back(i + 1);
continue;
}
theModule.reset(NN::ConvBNReluFused({theModule, p1Module, p2Module}, featureScaleStatMethod, scaleUpdateMethod, bits));
registerModel({theModule});
outputIndices = p2OutputIndices;
needEraseIndices.emplace_back(i + 1);
needEraseIndices.emplace_back(i + 2);
continue;
}
}
// conv + relu or conv + relu6
if (p1ModuleType == "ReLU" || p1ModuleType == "ReLU6") {
bool convReluConnected = ((convSingleOutputReference) && (p1InputIndices.size() == 1) && (p1InputIndices[0] == outputIndices[0]));
if (!convReluConnected) {
theModule.reset(NN::ConvBNReluFused({theModule}, featureScaleStatMethod, scaleUpdateMethod, bits));
registerModel({theModule});
continue;
}
theModule.reset(NN::ConvBNReluFused({theModule, p1Module}, featureScaleStatMethod, scaleUpdateMethod, bits));
registerModel({theModule});
outputIndices = p1OutputIndices;
needEraseIndices.emplace_back(i + 1);
continue;
}
}
if (i == mSubModules.size() - 1 && moduleType == "Conv") {
theModule.reset(NN::ConvBNReluFused({theModule}, featureScaleStatMethod, scaleUpdateMethod, bits));
registerModel({theModule});
}
}
// erase useless submodules
const int eraseSize = needEraseIndices.size();
int alreadyErasedCount = 0;
for (int i = 0; i < eraseSize; i++) {
auto position = needEraseIndices[i] - alreadyErasedCount;
auto type = std::get<0>(mSubModules[position])->type();
MNN_ASSERT(type == "BatchNorm" || type == "ReLU" || type == "ReLU6");
mSubModules.erase(mSubModules.begin() + position);
alreadyErasedCount++;
}
}
std::vector<VARP> PipelineModule::onForward(const std::vector<VARP>& inputs) {
std::vector<VARP> mStack(mStackSize);
for (int i = 0; i < mInputIndexes.size(); ++i) {
mStack[mInputIndexes[i]] = inputs[i];
}
for (int index = 0; index < mSubModules.size(); ++index) {
auto& m = mSubModules[index];
std::vector<VARP> tempInputs(std::get<1>(m).size());
for (int i = 0; i < tempInputs.size(); ++i) {
tempInputs[i] = mStack[std::get<1>(m)[i]];
MNN_ASSERT(nullptr != tempInputs[i]);
}
std::vector<VARP> tempOutputs = std::get<0>(m)->onForward(tempInputs);
MNN_ASSERT(tempOutputs.size() == std::get<2>(m).size());
for (int i = 0; i < tempOutputs.size(); ++i) {
mStack[std::get<2>(m)[i]] = tempOutputs[i];
MNN_ASSERT(nullptr != tempOutputs[i]);
}
}
std::vector<VARP> outputs(mOutputIndexes.size());
for (int i = 0; i < mOutputIndexes.size(); ++i) {
outputs[i] = mStack[mOutputIndexes[i]];
}
return outputs;
}
void PipelineModule::onClearCache() {
// Do nothing
}
static std::map<std::string, SubGraph> _createSubGraph(const MNN::Net* net, bool dynamic) {
std::map<std::string, SubGraph> subGraphMap;
auto subGraphs = net->subgraphs();
if (nullptr == subGraphs) {
return subGraphMap;
}
for (int i=0; i<subGraphs->size(); ++i) {
auto graph = subGraphs->GetAs<SubGraphProto>(i);
std::vector<std::string> subInputs;
std::vector<std::string> subOutputs;
if (nullptr != graph->inputs()) {
for (int v=0; v<graph->inputs()->size(); ++v) {
auto index = graph->inputs()->data()[v];
subInputs.emplace_back(graph->tensors()->GetAsString(index)->str());
}
}
for (int v=0; v<graph->outputs()->size(); ++v) {
auto index = graph->outputs()->data()[v];
subOutputs.emplace_back(graph->tensors()->GetAsString(index)->str());
}
// Pack to Net for loading
std::shared_ptr<Module> submodule;
{
std::unique_ptr<SubGraphProtoT> _tempInfo(graph->UnPack());
std::unique_ptr<NetT> _tempNet(new NetT);
_tempNet->oplists = std::move(_tempInfo->nodes);
_tempNet->tensorName = std::move(_tempInfo->tensors);
flatbuffers::FlatBufferBuilder builder(1024);
auto offset = Net::Pack(builder, _tempNet.get());
builder.Finish(offset);
if (dynamic) {
submodule.reset(PipelineModule::load(subInputs, subOutputs, (const uint8_t*)builder.GetBufferPointer(), builder.GetSize(), dynamic));
} else {
submodule.reset(new StaticModule((const uint8_t*)builder.GetBufferPointer(), builder.GetSize(), subInputs, subOutputs));
}
if (graph->name() != nullptr) {
submodule->setName(graph->name()->str());
}
}
auto key = graph->name()->str();
SubGraph subgraph;
subgraph.inputs = std::move(subInputs);
subgraph.outputs = std::move(subOutputs);
subgraph.m = submodule;
subGraphMap.insert(std::make_pair(key, subgraph));
}
return subGraphMap;
}
struct SubModuleInfo {
std::vector<int> opList;
std::vector<int> inputs;;
std::vector<int> outputs;
std::vector<uint8_t> tensorMask;
};
static std::vector<SubModuleInfo> _createSubModuleInfo(const MNN::Net* net, const std::set<int>& inputIndexes, const std::set<int>& outputIndexes) {
std::vector<SubModuleInfo> submodule;
SubModuleInfo current;
std::vector<int> inputOps;
// Seperate the graph to serveral submodule
for (int i=0; i<net->oplists()->size(); ++i) {
auto op = net->oplists()->GetAs<Op>(i);
// Collect Input
if (op->type() == OpType_Input) {
inputOps.emplace_back(i);
continue;
}
if (op->type() == OpType_If || op->type() == OpType_While) {
if (current.opList.size() > 0) {
// Not empty
submodule.emplace_back(std::move(current));
}
SubModuleInfo controlOp;
controlOp.opList = {i};
submodule.emplace_back(std::move(controlOp));
continue;
}
current.opList.emplace_back(i);
}
if (!current.opList.empty()) {
submodule.emplace_back(std::move(current));
}
/**Compute All SubModule's inputs and outputs*/
// 0: not use, 1: input, 2: output, 3: mid, 4: valid output
for (int moduleIndex=0; moduleIndex < submodule.size(); ++moduleIndex) {
auto& m = submodule[moduleIndex];
if (1 == m.opList.size()) {
// Fast way to determine
auto op = net->oplists()->GetAs<Op>(m.opList[0]);
if (nullptr != op->inputIndexes()) {
m.inputs.resize(op->inputIndexes()->size());
::memcpy(m.inputs.data(), op->inputIndexes()->data(), m.inputs.size() * sizeof(int));
}
if (nullptr != op->outputIndexes()) {
m.outputs.resize(op->outputIndexes()->size());
::memcpy(m.outputs.data(), op->outputIndexes()->data(), m.outputs.size() * sizeof(int));
}
} else {
m.tensorMask = std::vector<uint8_t>(net->tensorName()->size(), 0);
auto& tensorMask = m.tensorMask;
for (auto opIndex : m.opList) {
auto op = net->oplists()->GetAs<Op>(opIndex);
if (nullptr != op->inputIndexes()) {
for (int v=0; v<op->inputIndexes()->size(); ++v) {
auto index = op->inputIndexes()->data()[v];
tensorMask[index] = tensorMask[index] | 1;
}
}
if (nullptr != op->outputIndexes()) {
for (int v=0; v<op->outputIndexes()->size(); ++v) {
auto index = op->outputIndexes()->data()[v];
tensorMask[index] = tensorMask[index] | 2;
}
}
}
for (int i=0; i<tensorMask.size(); ++i) {
if (0 == tensorMask[i]) {
continue;
}
if (1 == tensorMask[i]) {
m.inputs.emplace_back(i);
continue;
}
if (2 == tensorMask[i]) {
m.outputs.emplace_back(i);
continue;
}
if (3 == tensorMask[i]) {
if (outputIndexes.find(i) != outputIndexes.end()) {
m.outputs.emplace_back(i);
}
}
}
}
// Check if the module's input is valid
for (int i=0; i<m.inputs.size(); ++i) {
auto index = m.inputs[i];
if (inputIndexes.find(index) != inputIndexes.end()) {
continue;
}
bool find = false;
for (int sub=0; sub < moduleIndex; ++sub) {
for (auto out : submodule[sub].outputs) {
if (out == index) {
find = true;
break;
}
}
if (find) {
break;
}
}
if (find) {
continue;
}
// Find from module
for (int sub=0; sub < moduleIndex; ++sub) {
if (submodule[sub].tensorMask.empty()) {
continue;
}
if (submodule[sub].tensorMask[index] == 2) {
find = true;
break;
}
if (submodule[sub].tensorMask[index] == 3) {
submodule[sub].outputs.emplace_back(index);
submodule[sub].tensorMask[index] = 2;
find = true;
break;
}
}
MNN_ASSERT(find);
}
}
for (auto& m : submodule) {
m.tensorMask.clear();
}
return submodule;
}
static Module* _createSubModule(const MNN::Net* net, const SubModuleInfo& info, const std::map<std::string, SubGraph>& subs) {
if (1 == info.opList.size()) {
auto op = net->oplists()->GetAs<Op>(info.opList[0]);
if (OpType_If == op->type()) {
return IfModule::create(op, subs);
}
if (OpType_While == op->type()) {
return WhileModule::create(op, subs);
}
MNN_ASSERT(false);
}
std::unique_ptr<NetT> _tempNet(new NetT);
// Copy Tensor Name
_tempNet->tensorName.resize(net->tensorName()->size());
for (int i=0; i<net->tensorName()->size(); ++i) {
_tempNet->tensorName[i] = net->tensorName()->GetAsString(i)->str();
}
// Create Input node
std::vector<std::string> inputNames;
for (auto index : info.inputs) {
std::unique_ptr<OpT> inputOp(new OpT);
inputOp->outputIndexes = {index};
inputOp->type = OpType_Input;
inputOp->main.type = OpParameter_Input;
inputOp->main.value = new InputT;
inputOp->main.AsInput()->dims = {0, 0, -1, -1};
_tempNet->oplists.emplace_back(std::move(inputOp));
inputNames.emplace_back(_tempNet->tensorName[index]);
}
// Create compute node
for (auto opIndex : info.opList) {
std::unique_ptr<OpT> op(net->oplists()->GetAs<Op>(opIndex)->UnPack());
_tempNet->oplists.emplace_back(std::move(op));
}
// Get output names
std::vector<std::string> outputNames;
for (auto index : info.outputs) {
outputNames.emplace_back(_tempNet->tensorName[index]);
}
// Create Net Buffer
flatbuffers::FlatBufferBuilder builder(1024);
auto offset = Net::Pack(builder, _tempNet.get());
builder.Finish(offset);
_tempNet.reset();
return new StaticModule((const uint8_t*)builder.GetBufferPointer(), builder.GetSize(), inputNames, outputNames);
}
Module* PipelineModule::load(const std::vector<std::string>& inputs, const std::vector<std::string>& outputs, const uint8_t* buffer, size_t length, bool dynamic) {
// Create Subgraph
auto net = GetNet(buffer);
auto subGraphs = net->subgraphs();
if (nullptr == net->oplists() || nullptr == net->tensorName()) {
MNN_ERROR("Invalid net, for null oplist or tensorName\n");
return nullptr;
}
if (!dynamic) {
if (nullptr == subGraphs) {
// Has no control flow, can just use static module
return new StaticModule(buffer, length, inputs, outputs);
}
}
auto subGraphMap = _createSubGraph(net, dynamic);
if (dynamic) {
// For dynamic mode
auto varMaps = Variable::loadMap(buffer, length);
std::vector<VARP> inputVars(inputs.size());
for (int i=0; i<inputs.size(); ++i) {
inputVars[i] = varMaps[inputs[i]];
}
std::vector<VARP> outputVars(outputs.size());
for (int i=0; i<outputs.size(); ++i) {
outputVars[i] = varMaps[outputs[i]];
}
return extract(inputVars, outputVars, false, subGraphMap);
}
std::set<int> inputIndexes;
std::set<int> outputIndexes;
std::map<std::string, int> inputsMap;
std::map<std::string, int> outputsMap;
for (int i=0; i<net->tensorName()->size(); ++i) {
auto tname = net->tensorName()->GetAsString(i)->str();
for (auto& s : inputs) {
if (tname == s) {
inputIndexes.emplace(i);
inputsMap.insert(std::make_pair(s, i));
break;
}
}
for (auto& s : outputs) {
if (tname == s) {
outputIndexes.emplace(i);
outputsMap.insert(std::make_pair(s, i));
break;
}
}
}
std::vector<int> inputIndexesVec(inputs.size());
for (int i=0; i<inputs.size(); ++i) {
inputIndexesVec[i] = inputsMap[inputs[i]];
}
std::vector<int> outputIndexesVec(outputs.size());
for (int i=0; i<outputs.size(); ++i) {
outputIndexesVec[i] = outputsMap[outputs[i]];
}
auto subModulesInfo = _createSubModuleInfo(net, inputIndexes, outputIndexes);
std::vector<std::shared_ptr<Module>> subModules(subModulesInfo.size());
for (int i=0; i<subModulesInfo.size(); ++i) {
subModules[i].reset(_createSubModule(net, subModulesInfo[i], subGraphMap));
}
auto result = new PipelineModule;
/**
Compute:
std::vector<std::tuple<std::shared_ptr<Module>, std::vector<int>, std::vector<int>>> mSubModules;
std::vector<int> mInputIndexes;
std::vector<int> mOutputIndexes;
int mStackSize = 0;
*/
// Make Stack, first: origin, second: new
std::map<int, int> stackMap;
int stackIndex = 0;
for (auto& m : subModulesInfo) {
for (auto index : m.inputs) {
if (stackMap.find(index) == stackMap.end()) {
stackMap.insert(std::make_pair(index, stackIndex));
stackIndex++;
}
}
for (auto index : m.outputs) {
if (stackMap.find(index) == stackMap.end()) {
stackMap.insert(std::make_pair(index, stackIndex));
stackIndex++;
}
}
}
result->mStackSize = stackMap.size();
for (int i=0; i<subModulesInfo.size(); ++i) {
auto& info = subModulesInfo[i];
// Reindex stack index
std::vector<int> subInputs(info.inputs.size());
for (int i=0; i<info.inputs.size(); ++i) {
subInputs[i] = stackMap[info.inputs[i]];
}
std::vector<int> subOutputs(info.outputs.size());
for (int i=0; i<info.outputs.size(); ++i) {
subOutputs[i] = stackMap[info.outputs[i]];
}
result->mSubModules.emplace_back(std::make_tuple(subModules[i], subInputs, subOutputs));
}
for (int i=0; i<inputIndexesVec.size(); ++i) {
inputIndexesVec[i] = stackMap[inputIndexesVec[i]];
}
for (int i=0; i<outputIndexesVec.size(); ++i) {
outputIndexesVec[i] = stackMap[outputIndexesVec[i]];
}
result->mInputIndexes = std::move(inputIndexesVec);
result->mOutputIndexes = std::move(outputIndexesVec);
return result;
}
Module* PipelineModule::clone(CloneContext* ctx) const {
PipelineModule* module(new PipelineModule);
for (const auto& it : mSubModules) {
const std::shared_ptr<Module>& submodule = std::get<0>(it);
const std::vector<int>& input_indices = std::get<1>(it);
const std::vector<int>& output_indices = std::get<2>(it);
std::shared_ptr<Module> replica_submodule(submodule->clone(ctx));
module->mSubModules.push_back(
std::make_tuple(replica_submodule, input_indices, output_indices));
module->registerModel({replica_submodule});
}
module->mInputIndexes = mInputIndexes;
module->mOutputIndexes = mOutputIndexes;
module->mStackSize = mStackSize;
return this->cloneBaseTo(ctx, module);
}
} // namespace Express
} // namespace MNN