mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			91 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUBatchToSpaceND.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/12/19.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUBatchToSpaceND.hpp"
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "backend/cpu/compute/CommonOptFunction.h"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| CPUBatchToSpaceND::CPUBatchToSpaceND(const Op* op, Backend* bn) : Execution(bn), mOp(op) {
 | |
|     // nothing to do
 | |
| }
 | |
| 
 | |
| ErrorCode CPUBatchToSpaceND::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     mRun();
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUBatchToSpaceND::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     auto input  = inputs[0];
 | |
|     auto output = outputs[0];
 | |
| 
 | |
|     const int channelsDiv4   = UP_DIV(input->channel(), 4);
 | |
|     const int inHeight       = input->height();
 | |
|     const int inWidth        = input->width();
 | |
|     const int inBatch        = input->batch();
 | |
|     const int outHeight      = output->height();
 | |
|     const int outWidth       = output->width();
 | |
|     const int outBatch       = output->batch();
 | |
|     const auto inputDataBase = input->host<float>();
 | |
|     auto outDataBase         = output->host<float>();
 | |
| 
 | |
|     auto param                 = mOp->main_as_SpaceBatch();
 | |
|     const int cropsTop         = param->padding()->int32s()->data()[0];
 | |
|     const int cropsLeft        = param->padding()->int32s()->data()[2];
 | |
|     const int blockShapeHeight = param->blockShape()->int32s()->data()[0];
 | |
|     const int blockShapeWidth  = param->blockShape()->int32s()->data()[1];
 | |
|     mRun                       = [=]() {
 | |
|         for (int ib = 0; ib < inBatch; ++ib) {
 | |
|             const int ob            = ib % outBatch;
 | |
|             const int spatialOffset = ib / outBatch;
 | |
|             const int strideH       = spatialOffset / blockShapeWidth;
 | |
|             const int strideW       = spatialOffset % blockShapeWidth;
 | |
| 
 | |
|             auto inDataBatch  = inputDataBase + ib * channelsDiv4 * inHeight * inWidth * 4;
 | |
|             auto outDataBatch = outDataBase + ob * channelsDiv4 * outHeight * outWidth * 4;
 | |
| 
 | |
|             const int validHStart = ALIMAX(0, (cropsTop - strideH + blockShapeHeight - 1) / blockShapeHeight);
 | |
|             const int validHEnd =
 | |
|                 ALIMIN(inHeight, (outHeight + cropsTop - strideH + blockShapeHeight - 1) / blockShapeHeight);
 | |
|             const int validWStart = ALIMAX(0, (cropsLeft - strideW + blockShapeWidth - 1) / blockShapeWidth);
 | |
|             const int validWEnd =
 | |
|                 ALIMIN(inWidth, (outWidth + cropsLeft - strideW + blockShapeWidth - 1) / blockShapeWidth);
 | |
| 
 | |
|             for (int c = 0; c < channelsDiv4; ++c) {
 | |
|                 auto inDataChannel  = inDataBatch + c * inHeight * inWidth * 4;
 | |
|                 auto outDataChannel = outDataBatch + c * outHeight * outWidth * 4;
 | |
| 
 | |
|                 for (int h = validHStart; h < validHEnd; ++h) {
 | |
|                     const int heightIndex = h * blockShapeHeight + strideH - cropsTop;
 | |
|                     const int widthIndex  = validWStart * blockShapeWidth + strideW - cropsLeft;
 | |
|                     auto inDataHeight     = inDataChannel + h * inWidth * 4;
 | |
|                     auto outDataHeight    = outDataChannel + (heightIndex * outWidth + widthIndex) * 4;
 | |
| 
 | |
|                     MNNCopyC4WithStride(inDataHeight + validWStart * 4, outDataHeight, 4, blockShapeWidth * 4,
 | |
|                                         validWEnd - validWStart);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUBatchToSpaceNDCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const override {
 | |
|         return new CPUBatchToSpaceND(op, backend);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUBatchToSpaceNDCreator, OpType_BatchToSpaceND);
 | |
| } // namespace MNN
 |