mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			85 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			85 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUCrop.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/10/16.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUCrop.hpp"
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| CPUCrop::CPUCrop(Backend* b, const MNN::Op* op) : Execution(b) {
 | |
|     auto cropParam = op->main_as_Crop();
 | |
|     mAxis          = cropParam->axis();
 | |
|     int offsetSize = cropParam->offset()->size();
 | |
| 
 | |
|     mOffsets.resize(offsetSize);
 | |
|     for (int i = 0; i < offsetSize; ++i) {
 | |
|         mOffsets[i] = cropParam->offset()->data()[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CPUCrop::cropCopy(const Tensor* inputTensor, Tensor* outputTensor, const std::vector<int>& offsets) {
 | |
|     const int outImgSize = outputTensor->buffer().dim[0].stride;
 | |
|     const int outHW      = outputTensor->buffer().dim[1].stride * 4;
 | |
|     const int inImgSize  = inputTensor->buffer().dim[0].stride;
 | |
|     const int inHW       = inputTensor->buffer().dim[1].stride * 4;
 | |
| 
 | |
|     const float* inData = inputTensor->host<float>();
 | |
|     float* outData      = outputTensor->host<float>();
 | |
| 
 | |
|     const int outChannels = UP_DIV(outputTensor->channel(), 4);
 | |
|     const int outWidth    = outputTensor->width() * 4;
 | |
|     const int inWidth     = inputTensor->width() * 4;
 | |
| 
 | |
|     for (int b = 0; b < outputTensor->batch(); ++b) {
 | |
|         for (int c = 0; c < outChannels; ++c) {
 | |
|             for (int h = 0; h < outputTensor->height(); ++h) {
 | |
|                 float* outPtr      = outData + b * outImgSize + c * outHW + h * outWidth;
 | |
|                 const float* inPtr = inData + (b + offsets[0]) * inImgSize + (c + offsets[1]) * inHW +
 | |
|                                      (h + offsets[2]) * inWidth + offsets[3] * 4;
 | |
|                 ::memcpy(outPtr, inPtr, sizeof(float) * outWidth);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| ErrorCode CPUCrop::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     const auto input0  = inputs[0];
 | |
|     const auto input1  = inputs[1];
 | |
|     const int inputDim = input0->buffer().dimensions;
 | |
|     std::vector<int> offsets(inputDim, 0);
 | |
|     MNN_ASSERT(2 <= mAxis);
 | |
|     for (int i = 0; i < inputDim; ++i) {
 | |
|         int cropOffset = 0;
 | |
|         if (i >= mAxis) {
 | |
|             if (mOffsets.size() == 1) {
 | |
|                 cropOffset = mOffsets[0];
 | |
|             } else if (mOffsets.size() > 1) {
 | |
|                 cropOffset = mOffsets[i - mAxis];
 | |
|             }
 | |
|             MNN_ASSERT(input0->buffer().dim[i].extent - cropOffset >= input1->buffer().dim[i].extent);
 | |
|         }
 | |
|         offsets[i] = cropOffset;
 | |
|     }
 | |
|     CPUCrop::cropCopy(input0, outputs[0], offsets);
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUCropCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const override {
 | |
|         return new CPUCrop(backend, op);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUCropCreator, OpType_Crop);
 | |
| 
 | |
| } // namespace MNN
 |