mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			177 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUCropAndResize.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/08/23.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUCropAndResize.hpp"
 | |
| #include <math.h>
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| template <typename T>
 | |
| CPUCropAndResize<T>::CPUCropAndResize(Backend* backend, const Op* op) : Execution(backend) {
 | |
|     auto cr             = op->main_as_CropAndResize();
 | |
|     mMethod             = cr->method();
 | |
|     mExtrapolationValue = cr->extrapolationValue();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| const ErrorCode CPUCropAndResize<T>::CropAndResize(const Tensor* image, const Tensor* boxes, const Tensor* boxIndex,
 | |
|                                                    Tensor* crops) {
 | |
|     const int batchSize   = image->buffer().dim[0].extent;
 | |
|     const int imageHeight = image->buffer().dim[1].extent;
 | |
|     const int imageWidth  = image->buffer().dim[2].extent;
 | |
|     const int imageDepth  = image->buffer().dim[3].extent;
 | |
| 
 | |
|     MNN_ASSERT(imageWidth > 0 && imageHeight > 0);
 | |
| 
 | |
|     const int numBoxes   = crops->buffer().dim[0].extent;
 | |
|     const int cropHeight = crops->buffer().dim[1].extent;
 | |
|     const int cropWidth  = crops->buffer().dim[2].extent;
 | |
|     const int depth      = crops->buffer().dim[3].extent;
 | |
| 
 | |
|     // init
 | |
|     memset(crops->host<float>(), 0, crops->size());
 | |
| 
 | |
|     // Sharding across boxes.
 | |
|     auto CropAndResizePerBox = [&](int startBox, int limitBox) {
 | |
|         for (int b = startBox; b < limitBox; ++b) {
 | |
|             const float y1 = boxes->host<float>()[b * 4];
 | |
|             const float x1 = boxes->host<float>()[b * 4 + 1];
 | |
|             const float y2 = boxes->host<float>()[b * 4 + 2];
 | |
|             const float x2 = boxes->host<float>()[b * 4 + 3];
 | |
| 
 | |
|             const int32_t bIn = boxIndex->host<int32_t>()[b];
 | |
|             if (0 > bIn || bIn >= batchSize) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             const float heightScale = (cropHeight > 1) ? (y2 - y1) * (imageHeight - 1) / (cropHeight - 1) : 0;
 | |
|             const float widthScale  = (cropWidth > 1) ? (x2 - x1) * (imageWidth - 1) / (cropWidth - 1) : 0;
 | |
| 
 | |
|             int32_t cropsHeight = crops->buffer().dim[1].extent;
 | |
|             int32_t cropsWidth  = crops->buffer().dim[2].extent;
 | |
|             int32_t cropsDepth  = crops->buffer().dim[3].extent;
 | |
| 
 | |
|             for (int y = 0; y < cropHeight; ++y) {
 | |
|                 const float inY =
 | |
|                     (cropHeight > 1) ? y1 * (imageHeight - 1) + y * heightScale : 0.5 * (y1 + y2) * (imageHeight - 1);
 | |
|                 if (inY < 0 || inY > imageHeight - 1) {
 | |
|                     for (int x = 0; x < cropWidth; ++x) {
 | |
|                         for (int d = 0; d < depth; ++d) {
 | |
|                             crops->host<float>()[b * cropsHeight * cropsWidth * cropsDepth +
 | |
|                                                  y * cropsWidth * cropsDepth + x * cropsDepth + d] =
 | |
|                                 mExtrapolationValue;
 | |
|                         }
 | |
|                     }
 | |
|                     continue;
 | |
|                 }
 | |
|                 if (mMethod == CropAndResizeMethod_BILINEAR) {
 | |
|                     const int topYIndex    = floorf(inY);
 | |
|                     const int bottomYIndex = ceilf(inY);
 | |
|                     const float yLerp      = inY - topYIndex;
 | |
| 
 | |
|                     for (int x = 0; x < cropWidth; ++x) {
 | |
|                         const float inX = (cropWidth > 1) ? x1 * (imageWidth - 1) + x * widthScale
 | |
|                                                           : 0.5 * (x1 + x2) * (imageWidth - 1);
 | |
|                         if (inX < 0 || inX > imageWidth - 1) {
 | |
|                             for (int d = 0; d < depth; ++d) {
 | |
|                                 crops->host<float>()[b * cropsHeight * cropsWidth * cropsDepth +
 | |
|                                                      y * cropsWidth * cropsDepth + x * cropsDepth + d] =
 | |
|                                     mExtrapolationValue;
 | |
|                             }
 | |
|                             continue;
 | |
|                         }
 | |
|                         const int leftXIndex  = floorf(inX);
 | |
|                         const int rightXIndex = ceilf(inX);
 | |
|                         const float xLerp     = inX - leftXIndex;
 | |
| 
 | |
|                         for (int d = 0; d < depth; ++d) {
 | |
|                             const float topLeft(
 | |
|                                 static_cast<float>(image->host<float>()[bIn * imageHeight * imageWidth * imageDepth +
 | |
|                                                                         topYIndex * imageWidth * imageDepth +
 | |
|                                                                         leftXIndex * imageDepth + d]));
 | |
|                             const float topRight(
 | |
|                                 static_cast<float>(image->host<float>()[bIn * imageHeight * imageWidth * imageDepth +
 | |
|                                                                         topYIndex * imageWidth * imageDepth +
 | |
|                                                                         rightXIndex * imageDepth + d]));
 | |
|                             const float bottomLeft(
 | |
|                                 static_cast<float>(image->host<float>()[bIn * imageHeight * imageWidth * imageDepth +
 | |
|                                                                         bottomYIndex * imageWidth * imageDepth +
 | |
|                                                                         leftXIndex * imageDepth + d]));
 | |
|                             const float bottomRight(
 | |
|                                 static_cast<float>(image->host<float>()[bIn * imageHeight * imageWidth * imageDepth +
 | |
|                                                                         bottomYIndex * imageWidth * imageDepth +
 | |
|                                                                         rightXIndex * imageDepth + d]));
 | |
| 
 | |
|                             const float top    = topLeft + (topRight - topLeft) * xLerp;
 | |
|                             const float bottom = bottomLeft + (bottomRight - bottomLeft) * xLerp;
 | |
|                             crops->host<float>()[b * cropsHeight * cropsWidth * cropsDepth +
 | |
|                                                  y * cropsWidth * cropsDepth + x * cropsDepth + d] =
 | |
|                                 top + (bottom - top) * yLerp;
 | |
|                         }
 | |
|                     }
 | |
|                 } else if (mMethod == CropAndResizeMethod_NEAREST) { // method == "nearest"
 | |
|                     for (int x = 0; x < cropWidth; ++x) {
 | |
|                         const float inX = (cropWidth > 1) ? x1 * (imageWidth - 1) + x * widthScale
 | |
|                                                           : 0.5 * (x1 + x2) * (imageWidth - 1);
 | |
|                         if (inX < 0 || inX > imageWidth - 1) {
 | |
|                             for (int d = 0; d < depth; ++d) {
 | |
|                                 crops->host<float>()[b * cropsHeight * cropsWidth * cropsDepth +
 | |
|                                                      y * cropsWidth * cropsDepth + x * cropsDepth + d] =
 | |
|                                     mExtrapolationValue;
 | |
|                             }
 | |
|                             continue;
 | |
|                         }
 | |
|                         const int closestXIndex = roundf(inX);
 | |
|                         const int closestYIndex = roundf(inY);
 | |
|                         for (int d = 0; d < depth; ++d) {
 | |
|                             crops->host<float>()[b * cropsHeight * cropsWidth * cropsDepth +
 | |
|                                                  y * cropsWidth * cropsDepth + x * cropsDepth + d] =
 | |
|                                 static_cast<float>(image->host<float>()[bIn * imageHeight * imageWidth * imageDepth +
 | |
|                                                                         closestYIndex * imageWidth * imageDepth +
 | |
|                                                                         closestXIndex * imageDepth + d]);
 | |
|                         }
 | |
|                     }
 | |
|                 } else {
 | |
|                     MNN_ASSERT(false);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     for (int i = 0; i < numBoxes; i++) {
 | |
|         CropAndResizePerBox(i, i + 1);
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| ErrorCode CPUCropAndResize<T>::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     // The shape of 'image' is [batch_size, image_height, image_width,
 | |
|     // channels].
 | |
|     const Tensor* image = inputs[0];
 | |
|     // The shape of 'boxes' is [num_boxes, 4].
 | |
|     const Tensor* boxes = inputs[1];
 | |
|     // The shape of 'box_index' is [num_boxes].
 | |
|     const Tensor* boxIndex = inputs[2];
 | |
| 
 | |
|     const ErrorCode status = CropAndResize(image, boxes, boxIndex, outputs[0]);
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| class CPUCropAndResizeCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const {
 | |
|         return new CPUCropAndResize<int32_t>(backend, op);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUCropAndResizeCreator, OpType_CropAndResize);
 | |
| } // namespace MNN
 |