mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			87 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			87 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUInt8ToFloat.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/5/22.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUInt8ToFloat.hpp"
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "core/Concurrency.h"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| extern "C" {
 | |
| void MNNInt8ScaleToFloat(float* dst, const int8_t* src, const float* scale, size_t size);
 | |
| }
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| CPUInt8ToFloat::CPUInt8ToFloat(Backend* backend, const MNN::Op* param) : Execution(backend) {
 | |
|     auto scale         = param->main_as_QuantizedFloatParam();
 | |
|     const int scaleLen = scale->tensorScale()->size();
 | |
|     mScales.reset(Tensor::createDevice<float>({ALIGN_UP4(scaleLen)}));
 | |
|     mValid = backend->onAcquireBuffer(mScales.get(), Backend::STATIC);
 | |
|     if (!mValid) {
 | |
|         return;
 | |
|     }
 | |
|     memset(mScales->host<float>(), 0, ALIGN_UP4(scaleLen) * sizeof(float));
 | |
|     memcpy(mScales->host<float>(), scale->tensorScale()->data(), scaleLen * sizeof(float));
 | |
| }
 | |
| CPUInt8ToFloat::~CPUInt8ToFloat() {
 | |
|     backend()->onReleaseBuffer(mScales.get(), Backend::STATIC);
 | |
| }
 | |
| ErrorCode CPUInt8ToFloat::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     const auto input = inputs[0];
 | |
|     auto output      = outputs[0];
 | |
| 
 | |
|     const auto inputDataPtr = input->host<int8_t>();
 | |
|     auto outputDataPtr      = output->host<float>();
 | |
|     const auto scaleDataPtr = mScales->host<float>();
 | |
|     const int channels      = input->channel();
 | |
|     const int icDiv4        = UP_DIV(channels, 4);
 | |
|     const int batch         = input->batch();
 | |
|     const int batchStride   = input->stride(0);
 | |
|     const int width         = input->width();
 | |
|     const int height        = input->height();
 | |
|     const int oc4Stride     = width * height;
 | |
| 
 | |
|     for (int bIndex = 0; bIndex < batch; ++bIndex) {
 | |
|         const auto srcBatch = inputDataPtr + bIndex * batchStride;
 | |
|         auto dstBatch       = outputDataPtr + bIndex * batchStride;
 | |
| 
 | |
|         MNN_CONCURRENCY_BEGIN(tId, icDiv4) {
 | |
|             const auto srcChannelPtr   = srcBatch + tId * oc4Stride * 4;
 | |
|             const auto scaleChannelPtr = scaleDataPtr + tId * 4;
 | |
|             auto dstChannlePtr         = dstBatch + tId * oc4Stride * 4;
 | |
| 
 | |
| #ifdef MNN_USE_NEON
 | |
|             MNNInt8ScaleToFloat(dstChannlePtr, srcChannelPtr, scaleChannelPtr, oc4Stride);
 | |
| #else
 | |
|             for (int i = 0; i < oc4Stride; ++i) {
 | |
|                 const auto srcStart = srcChannelPtr + i * 4;
 | |
|                 auto dstStart       = dstChannlePtr + i * 4;
 | |
|                 for (int j = 0; j < 4; ++j) {
 | |
|                     dstStart[j] = static_cast<float>(srcStart[j]) * scaleChannelPtr[j];
 | |
|                 }
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
|         MNN_CONCURRENCY_END();
 | |
|     }
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUInt8ToFloatCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const override {
 | |
|         return new CPUInt8ToFloat(backend, op);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUInt8ToFloatCreator, OpType_Int8ToFloat);
 | |
| 
 | |
| } // namespace MNN
 |