mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			92 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			92 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUQuantizedConcat.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/12/12.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| #ifdef MNN_SUPPORT_TFLITE_QUAN
 | |
| #include "backend/cpu/CPUQuantizedConcat.hpp"
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "backend/cpu/CPUFixedPoint.hpp"
 | |
| #include "backend/cpu/CPUQuantizationUtils.hpp"
 | |
| #include "core/Macro.h"
 | |
| #include "backend/cpu/compute/OptimizedComputer.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| CPUQuantizedConcat::CPUQuantizedConcat(Backend *backend, const Op *op) : Execution(backend) {
 | |
|     auto quantizedConcatParam = op->main_as_QuantizedConcat();
 | |
|     mAxis                     = quantizedConcatParam->axis();
 | |
|     for (int i = 0; i < quantizedConcatParam->inputZeroPoint()->size(); i++) {
 | |
|         mInputZeroPoint.push_back(quantizedConcatParam->inputZeroPoint()->data()[i]);
 | |
|         mInputScale.push_back(quantizedConcatParam->inputScale()->data()[i]);
 | |
|     }
 | |
|     mOutputZeroPoint = quantizedConcatParam->outputQuantizedParam()->zeroPoint();
 | |
|     mOutputScale     = quantizedConcatParam->outputQuantizedParam()->scale();
 | |
| }
 | |
| 
 | |
| ErrorCode CPUQuantizedConcat::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
|     if (mAxis < 0) {
 | |
|         mAxis += outputs[0]->buffer().dimensions;
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUQuantizedConcat::onExecute(const std::vector<MNN::Tensor *> &inputs,
 | |
|                                         const std::vector<MNN::Tensor *> &outputs) {
 | |
|     int inputsCount = (int)inputs.size();
 | |
|     MNN_ASSERT(inputsCount > 1);
 | |
|     int concatSize = 0;
 | |
|     int concatDim  = mAxis;
 | |
| 
 | |
|     for (int i = 0; i < inputsCount; i++) {
 | |
|         for (int j = 0; j < 4; j++) {
 | |
|             if (j != concatDim) {
 | |
|                 MNN_ASSERT(inputs[i]->buffer().dim[j].extent == outputs[0]->buffer().dim[j].extent);
 | |
|             }
 | |
|         }
 | |
|         concatSize += inputs[i]->buffer().dim[concatDim].extent;
 | |
|     }
 | |
|     MNN_ASSERT(concatSize == outputs[0]->buffer().dim[concatDim].extent);
 | |
| 
 | |
|     int outerSize = 1;
 | |
|     for (int i = concatDim - 1; i >= 0; i--) {
 | |
|         outerSize *= outputs[0]->buffer().dim[i].extent;
 | |
|     }
 | |
| 
 | |
|     const float inverseOutputScale = 1.f / mOutputScale;
 | |
|     uint8_t *outputPtr             = outputs[0]->host<uint8_t>();
 | |
| 
 | |
|     for (int k = 0; k < outerSize; k++) {
 | |
|         for (int i = 0; i < inputsCount; ++i) {
 | |
|             const int copySize      = inputs[i]->buffer().dim[concatDim].extent * inputs[i]->stride(concatDim);
 | |
|             const uint8_t *inputPtr = inputs[i]->host<uint8_t>() + k * copySize;
 | |
|             if (mInputZeroPoint[i] == mOutputZeroPoint && mInputScale[i] == mOutputScale) {
 | |
|                 memcpy(outputPtr, inputPtr, copySize);
 | |
|             } else {
 | |
|                 const float scale = mInputScale[i] * inverseOutputScale;
 | |
|                 const float bias  = -mInputZeroPoint[i] * scale;
 | |
|                 for (int j = 0; j < copySize; ++j) {
 | |
|                     const int32_t value = static_cast<int32_t>(round(inputPtr[j] * scale + bias)) + mOutputZeroPoint;
 | |
|                     outputPtr[j]        = static_cast<uint8_t>(std::max(std::min(255, value), 0));
 | |
|                 }
 | |
|             }
 | |
|             outputPtr += copySize;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUQuantizedConcatCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | |
|                                 const MNN::Op *op, Backend *backend) const {
 | |
|         return new CPUQuantizedConcat(backend, op);
 | |
|     }
 | |
| };
 | |
| REGISTER_CPU_OP_CREATOR(CPUQuantizedConcatCreator, OpType_QuantizedConcat);
 | |
| } // namespace MNN
 | |
| #endif
 |