mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			218 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			218 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUStridedSlice.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/08/02.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUStridedSlice.hpp"
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| CPUStridedSlice::CPUStridedSlice(Backend *b, const MNN::Op *op) : MNN::Execution(b), mOp(op) {
 | |
|     mDataType = mOp->main_as_StridedSliceParam()->T();
 | |
| }
 | |
| 
 | |
| ErrorCode CPUStridedSlice::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
|     MNN_ASSERT(4 == inputs.size());
 | |
|     MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|     Tensor *input            = inputs[0];
 | |
|     const int inputDimension = input->buffer().dimensions;
 | |
|     MNN_ASSERT(inputDimension > 0);
 | |
| 
 | |
|     // input haven't realized
 | |
|     auto parameter = mOp->main_as_StridedSliceParam();
 | |
| 
 | |
|     Tensor *begin   = inputs[1];
 | |
|     Tensor *end     = inputs[2];
 | |
|     Tensor *strided = inputs[3];
 | |
| 
 | |
|     MNN_ASSERT(begin->buffer().dimensions == end->buffer().dimensions &&
 | |
|                begin->buffer().dimensions == strided->buffer().dimensions);
 | |
| 
 | |
|     std::vector<int32_t> inputShape(input->buffer().dimensions);
 | |
|     for (int i = 0; i < input->buffer().dimensions; i++) {
 | |
|         inputShape[i] = input->buffer().dim[i].extent;
 | |
|     }
 | |
| 
 | |
|     int stridedSliceDimension = begin->buffer().dim[0].extent;
 | |
| 
 | |
|     std::vector<int32_t> beginShape(stridedSliceDimension);
 | |
|     std::vector<int32_t> endShape(stridedSliceDimension);
 | |
|     std::vector<int32_t> stridedShape(stridedSliceDimension);
 | |
|     std::vector<int32_t> outputShape;
 | |
|     std::vector<int32_t> outputShapeShrinked;
 | |
| 
 | |
|     std::vector<int32_t> beginMask(stridedSliceDimension);
 | |
|     for (int i = 0; i < stridedSliceDimension; i++) {
 | |
|         beginMask[i] = parameter->beginMask() & (1 << i);
 | |
|     }
 | |
| 
 | |
|     std::vector<int32_t> endMask(stridedSliceDimension);
 | |
|     for (int i = 0; i < stridedSliceDimension; i++) {
 | |
|         endMask[i] = parameter->endMask() & (1 << i);
 | |
|     }
 | |
| 
 | |
|     std::vector<int32_t> shrinkAxisMask(stridedSliceDimension);
 | |
|     for (int i = 0; i < stridedSliceDimension; i++) {
 | |
|         shrinkAxisMask[i] = parameter->shrinkAxisMask() & (1 << i);
 | |
|     }
 | |
| 
 | |
|     int ellipsisMaskNonZeroBitPosition = 0;
 | |
|     for (int i = 0; i < stridedSliceDimension; i++) {
 | |
|         int temp = parameter->ellipsisMask() & (1 << i);
 | |
|         if (temp != 0) {
 | |
|             ellipsisMaskNonZeroBitPosition = i; // only one non-zero bit is allowed in ellipsisMask
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::vector<int32_t> newAxisMask(stridedSliceDimension);
 | |
|     for (int i = 0; i < stridedSliceDimension; i++) {
 | |
|         newAxisMask[i] = parameter->newAxisMask() & (1 << i);
 | |
|     }
 | |
| 
 | |
|     if (parameter->ellipsisMask() != 0 || parameter->newAxisMask() != 0) {
 | |
|         MNN_ASSERT(false); // TODO: do not support these two mask now
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < stridedSliceDimension; i++) {
 | |
|         if (beginMask[i] > 0) {
 | |
|             beginShape[i] = 0;
 | |
|         } else {
 | |
|             beginShape[i] = std::min(inputShape[i], begin->host<int32_t>()[i]);
 | |
|         }
 | |
|         if (beginShape[i] < 0) {
 | |
|             beginShape[i] += input->buffer().dim[i].extent;
 | |
|         }
 | |
|         assert(beginShape[i] >= 0);
 | |
|         endShape[i] = endMask[i] > 0
 | |
|                           ? inputShape[i]
 | |
|                           : (end->host<int32_t>()[i] > inputShape[i] ? inputShape[i] : end->host<int32_t>()[i]);
 | |
|         if (endShape[i] < 0) {
 | |
|             endShape[i] += input->buffer().dim[i].extent;
 | |
|         }
 | |
|         assert(endShape[i] >= 0);
 | |
|         stridedShape[i] = shrinkAxisMask[i] > 0 ? 1 : strided->host<int32_t>()[i];
 | |
| 
 | |
|         if (shrinkAxisMask[i] == 0) {
 | |
|             int size = (abs(endShape[i] - beginShape[i]) - 1) / abs(stridedShape[i]) + 1;
 | |
|             outputShape.push_back(size);
 | |
|             outputShapeShrinked.push_back(size);
 | |
|         } else {
 | |
|             outputShape.push_back(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     int outputDimensionsWithoutRemain = (int)outputShape.size();
 | |
|     int dimensionRemained             = input->buffer().dimensions - stridedSliceDimension;
 | |
| 
 | |
|     for (int i = 0; i < dimensionRemained; i++) {
 | |
|         outputShape.push_back(input->buffer().dim[outputDimensionsWithoutRemain + i].extent);
 | |
|         outputShapeShrinked.push_back(input->buffer().dim[outputDimensionsWithoutRemain + i].extent);
 | |
|         stridedShape.push_back(1);
 | |
|         beginShape.push_back(0);
 | |
|     }
 | |
| 
 | |
|     mBeginShape.clear();
 | |
|     mEndShape.clear();
 | |
|     mStrideShape.clear();
 | |
|     mOutputShape.clear();
 | |
|     mBeginShape  = beginShape;
 | |
|     mEndShape    = endShape;
 | |
|     mStrideShape = stridedShape;
 | |
|     mOutputShape = outputShape;
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUStridedSlice::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
|     Tensor *input = inputs[0];
 | |
|     auto output   = outputs[0];
 | |
|     switch (mDataType) {
 | |
|         case DataType_DT_INT64:
 | |
|         case DataType_DT_INT32:
 | |
|             return execute<int32_t>(input, output);
 | |
|         case DataType_DT_FLOAT:
 | |
|         case DataType_DT_DOUBLE:
 | |
|             return execute<float>(input, output);
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
|     return NOT_SUPPORT;
 | |
| }
 | |
| 
 | |
| template <typename type>
 | |
| ErrorCode CPUStridedSlice::execute(Tensor *input, Tensor *output) {
 | |
|     int inputRank = input->buffer().dimensions;
 | |
|     auto inputData  = input->host<type>();
 | |
|     auto outputData = output->host<type>();
 | |
|     if (inputRank == 1) {
 | |
|         for (int i0 = 0; i0 < mOutputShape[0]; i0++) {
 | |
|             int dstIndex         = i0;
 | |
|             int srci0            = mBeginShape[0] + i0 * mStrideShape[0];
 | |
|             int srcIndex         = srci0;
 | |
|             outputData[dstIndex] = inputData[srcIndex];
 | |
|         }
 | |
|     } else if (inputRank == 2) {
 | |
|         for (int i0 = 0; i0 < mOutputShape[0]; i0++) {
 | |
|             for (int i1 = 0; i1 < mOutputShape[1]; i1++) {
 | |
|                 int dstIndex         = i0 * mOutputShape[1] + i1;
 | |
|                 int srci0            = mBeginShape[0] + i0 * mStrideShape[0];
 | |
|                 int srci1            = mBeginShape[1] + i1 * mStrideShape[1];
 | |
|                 int srcIndex         = srci0 * input->buffer().dim[1].extent + srci1;
 | |
|                 outputData[dstIndex] = inputData[srcIndex];
 | |
|             }
 | |
|         }
 | |
|     } else if (inputRank == 3) {
 | |
|         for (int i0 = 0; i0 < mOutputShape[0]; i0++) {
 | |
|             for (int i1 = 0; i1 < mOutputShape[1]; i1++) {
 | |
|                 for (int i2 = 0; i2 < mOutputShape[2]; i2++) {
 | |
|                     int dstIndex = i0 * mOutputShape[1] * mOutputShape[2] + i1 * mOutputShape[2] + i2;
 | |
|                     int srci0    = mBeginShape[0] + i0 * mStrideShape[0];
 | |
|                     int srci1    = mBeginShape[1] + i1 * mStrideShape[1];
 | |
|                     int srci2    = mBeginShape[2] + i2 * mStrideShape[2];
 | |
|                     int srcIndex = srci0 * input->buffer().dim[1].extent * input->buffer().dim[2].extent +
 | |
|                                    srci1 * input->buffer().dim[2].extent + srci2;
 | |
|                     outputData[dstIndex] = inputData[srcIndex];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else if (inputRank == 4) {
 | |
|         for (int i0 = 0; i0 < mOutputShape[0]; i0++) {
 | |
|             for (int i1 = 0; i1 < mOutputShape[1]; i1++) {
 | |
|                 for (int i2 = 0; i2 < mOutputShape[2]; i2++) {
 | |
|                     for (int i3 = 0; i3 < mOutputShape[3]; i3++) {
 | |
|                         int dstIndex = i0 * mOutputShape[1] * mOutputShape[2] * mOutputShape[3] +
 | |
|                                        i1 * mOutputShape[2] * mOutputShape[3] + i2 * mOutputShape[3] + i3;
 | |
|                         int srci0    = mBeginShape[0] + i0 * mStrideShape[0];
 | |
|                         int srci1    = mBeginShape[1] + i1 * mStrideShape[1];
 | |
|                         int srci2    = mBeginShape[2] + i2 * mStrideShape[2];
 | |
|                         int srci3    = mBeginShape[3] + i3 * mStrideShape[3];
 | |
|                         int srcIndex = srci0 * input->buffer().dim[1].extent * input->buffer().dim[2].extent *
 | |
|                                            input->buffer().dim[3].extent +
 | |
|                                        srci1 * input->buffer().dim[2].extent * input->buffer().dim[3].extent +
 | |
|                                        srci2 * input->buffer().dim[3].extent + srci3;
 | |
|                         outputData[dstIndex] = inputData[srcIndex];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUStridedSliceCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | |
|                                 const MNN::Op *op, Backend *backend) const override {
 | |
|         return new CPUStridedSlice(backend, op);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUStridedSliceCreator, OpType_StridedSlice);
 | |
| } // namespace MNN
 |