MNN/source/backend/opencl/execution/buffer/SoftmaxBufExecution.cpp

166 lines
6.2 KiB
C++

//
// SoftmaxBufExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/SoftmaxBufExecution.hpp"
#include "core/Macro.h"
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
namespace MNN {
namespace OpenCL {
SoftmaxBufExecution::SoftmaxBufExecution(const std::vector<Tensor *> &inputs, int axis, Backend *backend)
: Execution(backend) {
mAxis = axis;
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
buildSoftmaxKernel();
}
bool SoftmaxBufExecution::buildSoftmaxKernel() {
auto runtime = mOpenCLBackend->getOpenCLRuntime();
if (mKernel.get() == nullptr) {
std::set<std::string> buildOptions;
std::string kernelName;
if (mAxis == 1) {
mKernel = runtime->buildKernel("softmax_buf", "softmax_channel", buildOptions);
} else if (mAxis == 2) {
mKernel = runtime->buildKernel("softmax_buf", "softmax_height", buildOptions);
} else {
MNN_ASSERT(mAxis == 3);
mKernel = runtime->buildKernel("softmax_buf", "softmax_width", buildOptions);
}
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
}
return true;
}
ErrorCode SoftmaxBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
Tensor *input = inputs[0];
Tensor *output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int outputBatch = outputShape.at(0);
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int outputChannels = outputShape.at(3);
const int channelBlocks = UP_DIV(outputChannels, 4);
const int remainChannels = channelBlocks * 4 - outputChannels;
if (mAxis == 1) {
mGlobalWorkSize = {static_cast<uint32_t>(channelBlocks), static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(outputHeight * outputBatch)};
int shape[] = {outputBatch, channelBlocks, outputHeight, outputWidth};
uint32_t idx = 0;
mKernel.setArg(idx++, mGlobalWorkSize[0]);
mKernel.setArg(idx++, mGlobalWorkSize[1]);
mKernel.setArg(idx++, mGlobalWorkSize[2]);
mKernel.setArg(idx++, openCLBuffer(input));
mKernel.setArg(idx++, openCLBuffer(output));
mKernel.setArg(idx++, static_cast<int>(outputChannels));
mKernel.setArg(idx++, remainChannels);
mKernel.setArg(idx++, shape);
std::string kernelName = "softmax_buf_channel";
mLocalWorkSize =
localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName, mKernel).first;
} else if (mAxis == 2){
mGlobalWorkSize = {(uint32_t)channelBlocks*outputWidth, (uint32_t)outputBatch, 1};
int shape[] = {outputBatch, channelBlocks, outputHeight, outputWidth};
mKernel.setArg(0, openCLBuffer(input));
mKernel.setArg(1, openCLBuffer(output));
mKernel.setArg(2, shape);
std::string kernelName = "softmax_buf_height";
mLocalWorkSize =
localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName, mKernel).first;
} else {
MNN_ASSERT(mAxis == 3);
mGlobalWorkSize = {(uint32_t)channelBlocks, (uint32_t)outputBatch*outputHeight, 1};
int shape[] = {outputBatch, channelBlocks, outputHeight, outputWidth};
mKernel.setArg(0, openCLBuffer(input));
mKernel.setArg(1, openCLBuffer(output));
mKernel.setArg(2, shape);
std::string kernelName = "softmax_buf_width";
mLocalWorkSize =
localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName, mKernel).first;
}
return NO_ERROR;
}
ErrorCode SoftmaxBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start SoftmaxBufExecution onExecute !\n");
#endif
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
MNN_PRINT("kernel cost:%d us Softmax\n",costTime);
#else
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("end SoftmaxBufExecution onExecute !\n");
#endif
return NO_ERROR;
}
class SoftmaxBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
if(inputs[0]->dimensions() == 3 || outputs[0]->dimensions() == 3){
MNN_PRINT("softmax not support dimensions == 3 \n");
return nullptr;
}
auto dimType = inputs[0]->getDimensionType();
if (dimType == Tensor::TENSORFLOW && inputs[0]->dimensions() == 4) {
int index[4] = {0, 2, 3, 1};
auto axis = op->main_as_Axis()->axis();
if (axis < 0) {
axis = inputs[0]->dimensions() + axis;
}
axis = index[axis];
//1 : channel //2 : height
if (1 == axis || 2 == axis || 3 == axis) {
return new SoftmaxBufExecution(inputs, axis, backend);
}
return nullptr;
} else {
auto axis = op->main_as_Axis()->axis();
if (axis < 0) {
axis = inputs[0]->dimensions() + axis;
}
if (1 == axis || 2 == axis || 3 == axis) {
return new SoftmaxBufExecution(inputs, axis, backend);
}
return nullptr;
}
}
};
OpenCLCreatorRegister<SoftmaxBufCreator> __SoftmaxBuf_op(OpType_Softmax, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif/* MNN_OPENCL_BUFFER_CLOSED */