MNN/codegen/OpFuse.cpp

349 lines
12 KiB
C++

//
// OpFuse.cpp
// MNN
//
// Created by MNN on 2020/9/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "OpFuse.hpp"
#include "geometry/GeometryComputerUtils.hpp"
#include "PluginModule.hpp"
#include <queue>
#include <unordered_map>
#include "cpu/CPUAst.hpp"
#include "jit/LLVMJit.hpp"
#if !defined(_MSC_VER)
#include <dlfcn.h>
#endif
/**
OpFuse
*/
namespace MNN {
static void dumpOp(const Op* op) {
if (op->name()) printf("name: %s, ", op->name()->c_str());
printf("Type: %s,\n", MNN::EnumNameOpType(op->type()));
if (op->type() == OpType_BinaryOp) {
auto binary = op->main_as_BinaryOp();
auto type = binary->opType();
printf("Op: %s\n", MNN::EnumNamesBinaryOpOperation()[type]);
} else if (op->type() == OpType_UnaryOp){
auto unary = op->main_as_UnaryOp();
auto type = unary->opType();
printf("Op: %s\n", MNN::EnumNamesUnaryOpOperation()[type]);
}
}
static void dumpRegion(Tensor::InsideDescribe::Region& reg) {
printf("\n{\nsize: [%d, %d, %d], origin: %p\n", reg.size[0], reg.size[1], reg.size[2], reg.origin);
printf("src: { stride: [%d, %d, %d], offset: %d }\n", reg.src.stride[0],reg.src.stride[1],reg.src.stride[2],reg.src.offset);
printf("dst: { stride: [%d, %d, %d], offset: %d }\n}\n", reg.dst.stride[0],reg.dst.stride[1],reg.dst.stride[2],reg.dst.offset);
}
static void dumpTensor(const Tensor* t) {
printf("\t%p [", t);
for (int d : t->shape())
printf("%d,", d);
printf("],\n");
auto des = TensorUtils::getDescribe(t);
if (des->memoryType == Tensor::InsideDescribe::MEMORY_VIRTUAL) {
printf("Regions:");
for (auto reg : des->regions) {
dumpRegion(reg);
}
}
}
static void dumpCmd(const Command* cmd) {
printf("\n{\n");
dumpOp(cmd->op);
printf("output: \n");
dumpTensor(cmd->outputs[0]);
printf("input: \n");
for (auto input : cmd->inputs) {
dumpTensor(input);
}
printf("}\n");
}
// is legal fused type
bool isLegal(const Command* cmd) {
auto type = cmd->op->type();
bool elemWise = type == OpType_BinaryOp
|| type == OpType_UnaryOp
|| type == OpType_ReLU
|| type == OpType_ReLU6
|| type == OpType_Eltwise;
if (elemWise) {
return true;
}
#define fuse_raster
#ifdef fuse_raster
if (type == OpType_Raster) {
auto outputFormat = TensorUtils::getDescribe(cmd->outputs[0])->dimensionFormat;
bool legalFormat = outputFormat != MNN_DATA_FORMAT_NC4HW4;
if (TensorUtils::getDescribe(cmd->inputs[0])->regions.size() > 1) return false;
for (auto reg : TensorUtils::getDescribe(cmd->inputs[0])->regions) {
legalFormat &= TensorUtils::getDescribe(reg.origin)->dimensionFormat == outputFormat;
}
return legalFormat;
}
#endif
return false;
}
Node* LCA(Node* x, Node* y) {
while (x != y) {
if (!x || !y) {
return nullptr;
}
if (x->topoIndex < y->topoIndex) {
x = x->domainatePred;
} else {
y = y->domainatePred;
}
}
return x;
}
bool allPathLegal(Node* s, Node* t) {
bool legal = true;
std::queue<Node*> q;
q.push(s);
while (!q.empty()) {
auto node = q.front();
q.pop();
legal &= isLegal(node->cmd);
for (auto succ : node->succ) {
if (succ != t) {
q.push(succ);
}
}
}
return legal;
}
std::vector<Node*> fuseNode(Node* root, std::vector<Node*>& edges) {
std::vector<Node*> fuseSet;
std::queue<Node*> q;
q.push(root);
while (!q.empty()) {
auto node = q.front();
fuseSet.insert(fuseSet.begin(), node);
q.pop();
for (auto child : node->domainateSucc) {
if (isLegal(child->cmd) && allPathLegal(child, root)) {
q.push(child);
} else {
edges.push_back(child);
}
}
}
return fuseSet;
}
void codegen(CommandBuffer& cmd, std::vector<std::vector<Node*>>& fuseSets) {
// generate Kernel
CPUPluginModule plugin("codegen_demo");
for (auto compSet : fuseSets) {
// printf("set size: %lu \n", compSet.size());
InOutTensors tensors = plugin.addFunction(compSet);
auto inputs = tensors.first;
auto outputs = tensors.second;
// build Plugin Op
Command cmdPlugin;
{
std::unique_ptr<OpT> pluginOp(new OpT);
pluginOp->type = OpType_Plugin;
pluginOp->name = "PluginWrapper";
PluginT* plugin_param = new PluginT;
plugin_param->type = "PluginWrapper";
plugin_param->attr.resize(1);
plugin_param->attr[0].reset(new AttributeT);
plugin_param->attr[0]->key = "kernel";
plugin_param->attr[0]->i = plugin.getFunctionNum()-1;
pluginOp->main.type = OpParameter_Plugin;
pluginOp->main.value = plugin_param;
flatbuffers::FlatBufferBuilder builder;
auto lastOffset = Op::Pack(builder, pluginOp.get());
builder.Finish(lastOffset);
cmdPlugin = GeometryComputerUtils::makeCommand(builder, inputs, outputs);
}
for (int i = 0; i < compSet.size(); i++) {
auto cmd = const_cast<Command*>(compSet[i]->cmd);
if (i == compSet.size()-1) {
cmd->op = cmdPlugin.op;
cmd->inputs = cmdPlugin.inputs;
cmd->outputs = cmdPlugin.outputs;
cmd->buffer = cmdPlugin.buffer;
} else {
cmd->op = nullptr;
cmd->buffer.clear();
}
}
}
// printf("total: %d\n", idx);
plugin.codegen();
// printf("cmd num: %lu \n", cmd.command.size());
for (auto iter = cmd.command.begin(); iter != cmd.command.end();) {
if (iter->op == nullptr) {
iter = cmd.command.erase(iter);
} else {
++iter;
}
}
#if !defined(_MSC_VER)
// printf("cmd num: %lu \n", cmd.command.size());
dlopen("./libplugin_fuse.so", RTLD_NOW | RTLD_LOCAL);
#endif
}
void jit(CommandBuffer& cmd, std::vector<std::vector<Node*>>& fuseSets) {
LLVMJIT* theJit = LLVMJIT::createLLVMJIT();
CPUPluginModule plugin("jit_demo");
std::string kernelStr;
for (auto compSet : fuseSets) {
/*
// printf("set size: %lu \n", compSet.size());
if (true) {
for (auto com : compSet) {
// json :
// { fusedOps: [ { idx:int, srcOps: [name: string], inputs:[name:string], outputs:[name:string] } ], dynlib:string, jitObj:string, module:string }
dumpCmd(com->cmd);
}
}
*/
kernelStr += "[";
for (auto com : compSet) {
kernelStr += com->cmd->op->name()->str();
}
kernelStr += "]";
InOutTensors tensors = plugin.addFunction(compSet);
auto inputs = tensors.first;
auto outputs = tensors.second;
// build Plugin Op
Command cmdPlugin;
{
std::unique_ptr<OpT> pluginOp(new OpT);
pluginOp->type = OpType_Plugin;
pluginOp->name = "JitPluginWrapper";
PluginT* plugin_param = new PluginT;
plugin_param->type = "JitPluginWrapper";
plugin_param->attr.resize(1);
plugin_param->attr[0].reset(new AttributeT);
plugin_param->attr[0]->key = "kernel";
plugin_param->attr[0]->i = plugin.getFunctionNum() - 1;
pluginOp->main.type = OpParameter_Plugin;
pluginOp->main.value = plugin_param;
flatbuffers::FlatBufferBuilder builder;
auto lastOffset = Op::Pack(builder, pluginOp.get());
builder.Finish(lastOffset);
cmdPlugin = GeometryComputerUtils::makeCommand(builder, inputs, outputs);
}
for (int i = 0; i < compSet.size(); i++) {
auto cmd = const_cast<Command*>(compSet[i]->cmd);
if (i == compSet.size()-1) {
cmd->op = cmdPlugin.op;
cmd->inputs = cmdPlugin.inputs;
cmd->outputs = cmdPlugin.outputs;
cmd->buffer = cmdPlugin.buffer;
} else {
cmd->op = nullptr;
cmd->buffer.clear();
}
}
}
for (auto iter = cmd.command.begin(); iter != cmd.command.end();) {
if (iter->op == nullptr) {
iter = cmd.command.erase(iter);
} else {
++iter;
}
}
size_t id = std::hash<std::string>()(kernelStr);
std::unique_ptr<LLVMTarget> target(new LLVMTarget("jit-kenerl-" + std::to_string(id)));
target->getModule()->setDataLayout(theJit->getDataLayout());
plugin.codegen(target.get());
// add module to JIT and compile
auto m = target->getThreadSafeModule();
auto resourceTracker = theJit->getMainJITDylib().createResourceTracker();
theJit->addModule(std::move(m), resourceTracker);
theJit->compileAllFunction(plugin.getFunctionNum());
}
bool opFuse(CommandBuffer& cmd) {
std::unordered_map<const Tensor*, Node*> outputTensor;
// build graph
std::vector<std::unique_ptr<Node>> graph;
auto insertEdge = [&outputTensor](const Tensor* inputTensor, Node* succNode) {
if (outputTensor.find(inputTensor) != outputTensor.end()) {
auto preNode = outputTensor[inputTensor];
succNode->pred.push_back(preNode);
preNode->succ.push_back(succNode);
}
};
for (int i = 0; i < cmd.command.size(); i++) {
auto& iter = cmd.command[i];
if (!iter.buffer.empty()) {
iter.op = flatbuffers::GetMutableRoot<Op>((void*)iter.buffer.data());
}
std::unique_ptr<Node> node(new Node);
node->cmd = &iter;
node->topoIndex = i;
for (auto input : iter.inputs) {
if (TensorUtils::getDescribe(input)->memoryType == Tensor::InsideDescribe::MEMORY_VIRTUAL) {
for (auto& region : TensorUtils::getDescribe(input)->regions) {
insertEdge(region.origin, node.get());
}
} else {
insertEdge(input, node.get());
}
}
for (auto output : iter.outputs) {
outputTensor[output] = node.get();
}
graph.push_back(std::move(node));
}
std::queue<Node*> postDominateNodeQueue;
// build dominate tree
for (int i = graph.size()-1; i >= 0; i--) {
auto node = graph[i].get();
if (!node->succ.empty()) {
auto parent = node->succ[0];
for (int j = 1; j < node->succ.size(); j++) {
parent = LCA(parent, node->succ[j]);
}
node->domainatePred = parent;
if (parent) {
parent->domainateSucc.push_back(node);
} else {
postDominateNodeQueue.push(node);
}
} else {
node->domainatePred = nullptr;
postDominateNodeQueue.push(node);
}
}
// bfs find subgraph
std::vector<std::vector<Node*>> fuseSets;
while (!postDominateNodeQueue.empty()) {
auto root = postDominateNodeQueue.front();
postDominateNodeQueue.pop();
if (root->domainateSucc.empty()) {
continue;
}
std::vector<Node*> childs;
if (isLegal(root->cmd)) {
auto fuseSet = fuseNode(root, childs);
if (fuseSet.size() > 1) {
fuseSets.emplace_back(std::move(fuseSet));
}
} else {
childs = root->domainateSucc;
}
for (auto child : childs) {
postDominateNodeQueue.push(child);
}
}
jit(cmd, fuseSets);
return true;
}
} // namespace MNN