mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			177 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  CPUCropAndResize.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2018/08/23.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "backend/cpu/CPUCropAndResize.hpp"
 | 
						|
#include <math.h>
 | 
						|
#include "backend/cpu/CPUBackend.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
 | 
						|
template <typename T>
 | 
						|
CPUCropAndResize<T>::CPUCropAndResize(Backend* backend, const Op* op) : Execution(backend) {
 | 
						|
    auto cr             = op->main_as_CropAndResize();
 | 
						|
    mMethod             = cr->method();
 | 
						|
    mExtrapolationValue = cr->extrapolationValue();
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
const ErrorCode CPUCropAndResize<T>::CropAndResize(const Tensor* image, const Tensor* boxes, const Tensor* boxIndex,
 | 
						|
                                                   Tensor* crops) {
 | 
						|
    const int batchSize   = image->buffer().dim[0].extent;
 | 
						|
    const int imageHeight = image->buffer().dim[1].extent;
 | 
						|
    const int imageWidth  = image->buffer().dim[2].extent;
 | 
						|
    const int imageDepth  = image->buffer().dim[3].extent;
 | 
						|
 | 
						|
    MNN_ASSERT(imageWidth > 0 && imageHeight > 0);
 | 
						|
 | 
						|
    const int numBoxes   = crops->buffer().dim[0].extent;
 | 
						|
    const int cropHeight = crops->buffer().dim[1].extent;
 | 
						|
    const int cropWidth  = crops->buffer().dim[2].extent;
 | 
						|
    const int depth      = crops->buffer().dim[3].extent;
 | 
						|
 | 
						|
    // init
 | 
						|
    memset(crops->host<float>(), 0, crops->size());
 | 
						|
 | 
						|
    // Sharding across boxes.
 | 
						|
    auto CropAndResizePerBox = [&](int startBox, int limitBox) {
 | 
						|
        for (int b = startBox; b < limitBox; ++b) {
 | 
						|
            const float y1 = boxes->host<float>()[b * 4];
 | 
						|
            const float x1 = boxes->host<float>()[b * 4 + 1];
 | 
						|
            const float y2 = boxes->host<float>()[b * 4 + 2];
 | 
						|
            const float x2 = boxes->host<float>()[b * 4 + 3];
 | 
						|
 | 
						|
            const int32_t bIn = boxIndex->host<int32_t>()[b];
 | 
						|
            if (0 > bIn || bIn >= batchSize) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            const float heightScale = (cropHeight > 1) ? (y2 - y1) * (imageHeight - 1) / (cropHeight - 1) : 0;
 | 
						|
            const float widthScale  = (cropWidth > 1) ? (x2 - x1) * (imageWidth - 1) / (cropWidth - 1) : 0;
 | 
						|
 | 
						|
            int32_t cropsHeight = crops->buffer().dim[1].extent;
 | 
						|
            int32_t cropsWidth  = crops->buffer().dim[2].extent;
 | 
						|
            int32_t cropsDepth  = crops->buffer().dim[3].extent;
 | 
						|
 | 
						|
            for (int y = 0; y < cropHeight; ++y) {
 | 
						|
                const float inY =
 | 
						|
                    (cropHeight > 1) ? y1 * (imageHeight - 1) + y * heightScale : 0.5 * (y1 + y2) * (imageHeight - 1);
 | 
						|
                if (inY < 0 || inY > imageHeight - 1) {
 | 
						|
                    for (int x = 0; x < cropWidth; ++x) {
 | 
						|
                        for (int d = 0; d < depth; ++d) {
 | 
						|
                            crops->host<float>()[b * cropsHeight * cropsWidth * cropsDepth +
 | 
						|
                                                 y * cropsWidth * cropsDepth + x * cropsDepth + d] =
 | 
						|
                                mExtrapolationValue;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                if (mMethod == CropAndResizeMethod_BILINEAR) {
 | 
						|
                    const int topYIndex    = floorf(inY);
 | 
						|
                    const int bottomYIndex = ceilf(inY);
 | 
						|
                    const float yLerp      = inY - topYIndex;
 | 
						|
 | 
						|
                    for (int x = 0; x < cropWidth; ++x) {
 | 
						|
                        const float inX = (cropWidth > 1) ? x1 * (imageWidth - 1) + x * widthScale
 | 
						|
                                                          : 0.5 * (x1 + x2) * (imageWidth - 1);
 | 
						|
                        if (inX < 0 || inX > imageWidth - 1) {
 | 
						|
                            for (int d = 0; d < depth; ++d) {
 | 
						|
                                crops->host<float>()[b * cropsHeight * cropsWidth * cropsDepth +
 | 
						|
                                                     y * cropsWidth * cropsDepth + x * cropsDepth + d] =
 | 
						|
                                    mExtrapolationValue;
 | 
						|
                            }
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
                        const int leftXIndex  = floorf(inX);
 | 
						|
                        const int rightXIndex = ceilf(inX);
 | 
						|
                        const float xLerp     = inX - leftXIndex;
 | 
						|
 | 
						|
                        for (int d = 0; d < depth; ++d) {
 | 
						|
                            const float topLeft(
 | 
						|
                                static_cast<float>(image->host<float>()[bIn * imageHeight * imageWidth * imageDepth +
 | 
						|
                                                                        topYIndex * imageWidth * imageDepth +
 | 
						|
                                                                        leftXIndex * imageDepth + d]));
 | 
						|
                            const float topRight(
 | 
						|
                                static_cast<float>(image->host<float>()[bIn * imageHeight * imageWidth * imageDepth +
 | 
						|
                                                                        topYIndex * imageWidth * imageDepth +
 | 
						|
                                                                        rightXIndex * imageDepth + d]));
 | 
						|
                            const float bottomLeft(
 | 
						|
                                static_cast<float>(image->host<float>()[bIn * imageHeight * imageWidth * imageDepth +
 | 
						|
                                                                        bottomYIndex * imageWidth * imageDepth +
 | 
						|
                                                                        leftXIndex * imageDepth + d]));
 | 
						|
                            const float bottomRight(
 | 
						|
                                static_cast<float>(image->host<float>()[bIn * imageHeight * imageWidth * imageDepth +
 | 
						|
                                                                        bottomYIndex * imageWidth * imageDepth +
 | 
						|
                                                                        rightXIndex * imageDepth + d]));
 | 
						|
 | 
						|
                            const float top    = topLeft + (topRight - topLeft) * xLerp;
 | 
						|
                            const float bottom = bottomLeft + (bottomRight - bottomLeft) * xLerp;
 | 
						|
                            crops->host<float>()[b * cropsHeight * cropsWidth * cropsDepth +
 | 
						|
                                                 y * cropsWidth * cropsDepth + x * cropsDepth + d] =
 | 
						|
                                top + (bottom - top) * yLerp;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                } else if (mMethod == CropAndResizeMethod_NEAREST) { // method == "nearest"
 | 
						|
                    for (int x = 0; x < cropWidth; ++x) {
 | 
						|
                        const float inX = (cropWidth > 1) ? x1 * (imageWidth - 1) + x * widthScale
 | 
						|
                                                          : 0.5 * (x1 + x2) * (imageWidth - 1);
 | 
						|
                        if (inX < 0 || inX > imageWidth - 1) {
 | 
						|
                            for (int d = 0; d < depth; ++d) {
 | 
						|
                                crops->host<float>()[b * cropsHeight * cropsWidth * cropsDepth +
 | 
						|
                                                     y * cropsWidth * cropsDepth + x * cropsDepth + d] =
 | 
						|
                                    mExtrapolationValue;
 | 
						|
                            }
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
                        const int closestXIndex = roundf(inX);
 | 
						|
                        const int closestYIndex = roundf(inY);
 | 
						|
                        for (int d = 0; d < depth; ++d) {
 | 
						|
                            crops->host<float>()[b * cropsHeight * cropsWidth * cropsDepth +
 | 
						|
                                                 y * cropsWidth * cropsDepth + x * cropsDepth + d] =
 | 
						|
                                static_cast<float>(image->host<float>()[bIn * imageHeight * imageWidth * imageDepth +
 | 
						|
                                                                        closestYIndex * imageWidth * imageDepth +
 | 
						|
                                                                        closestXIndex * imageDepth + d]);
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    MNN_ASSERT(false);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    for (int i = 0; i < numBoxes; i++) {
 | 
						|
        CropAndResizePerBox(i, i + 1);
 | 
						|
    }
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
ErrorCode CPUCropAndResize<T>::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | 
						|
    // The shape of 'image' is [batch_size, image_height, image_width,
 | 
						|
    // channels].
 | 
						|
    const Tensor* image = inputs[0];
 | 
						|
    // The shape of 'boxes' is [num_boxes, 4].
 | 
						|
    const Tensor* boxes = inputs[1];
 | 
						|
    // The shape of 'box_index' is [num_boxes].
 | 
						|
    const Tensor* boxIndex = inputs[2];
 | 
						|
 | 
						|
    const ErrorCode status = CropAndResize(image, boxes, boxIndex, outputs[0]);
 | 
						|
    return status;
 | 
						|
}
 | 
						|
 | 
						|
class CPUCropAndResizeCreator : public CPUBackend::Creator {
 | 
						|
public:
 | 
						|
    virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | 
						|
                                const MNN::Op* op, Backend* backend) const {
 | 
						|
        return new CPUCropAndResize<int32_t>(backend, op);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_CPU_OP_CREATOR(CPUCropAndResizeCreator, OpType_CropAndResize);
 | 
						|
} // namespace MNN
 |