MNN/source/backend/cpu/CPURelu.cpp

325 lines
14 KiB
C++

//
// CPURelu.cpp
// MNN
//
// Created by MNN on 2018/07/15.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <string.h>
#include "backend/cpu/CPURelu.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "backend/cpu/compute/CommonOptFunction.h"
#include "core/Macro.h"
#include "core/Concurrency.h"
#include "CPUBackend.hpp"
#include "core/TensorUtils.hpp"
namespace MNN {
CPURelu::CPURelu(Backend *b, float slope) : Execution(b) {
auto core = static_cast<CPUBackend*>(b)->functions();
mSlope.reset(core->bytes * core->pack);
if (core->bytes < 4) {
// For Lowp
std::vector<float> tempSlope(core->pack);
for (int i=0; i<core->pack; ++i) {
tempSlope[i] = slope;
}
core->MNNFp32ToLowp(tempSlope.data(), (int16_t*)mSlope.get(), core->pack);
} else {
for (int i=0; i<core->pack; ++i) {
((float*)mSlope.get())[i] = slope;
}
}
}
ErrorCode CPURelu::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto core = static_cast<CPUBackend*>(backend())->functions();
mRealSize = static_cast<CPUBackend*>(backend())->getTensorSize(inputs[0]);
if (mRealSize % core->pack != 0) {
mCacheDst.reset(core->pack * core->bytes);
mCacheSrc.reset(core->pack * core->bytes);
}
return NO_ERROR;
}
ErrorCode CPURelu::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto& ib = inputs[0]->buffer();
auto& ob = outputs[0]->buffer();
if (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) {
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
auto gcore = static_cast<CPUBackend*>(backend())->functions();
const int8_t* srcO = (const int8_t*)ib.host;
int8_t* dstO = (int8_t*)ob.host;
auto inInfo = TensorUtils::getQuantInfo(inputs[0]);
auto outInfo = TensorUtils::getQuantInfo(outputs[0]);
auto size = mRealSize;
auto numberThread = ((CPUBackend*)backend())->threadNumber();
auto inputscale = inInfo[0];
auto inputzero = (ssize_t)inInfo[1];
auto outputzero = (ssize_t)outInfo[1];
auto outputscale = outInfo[0] > 0.f ? 1.0f / outInfo[0] : 0.f;
QuanPrePostParameters params;
params.maxValue = static_cast<ssize_t>(inInfo[3]);
params.minValue = static_cast<ssize_t>(inInfo[2]);
params.inputScale = &inputscale;
params.inputZeroPoint = &inputzero;
params.outputScale = &outputscale;
params.outputZeroPoint = &outputzero;
if (((float*)mSlope.get())[0] != 0.f) {
// PRelu Int8
int sizeQuad = size / gcore->pack;
int remain = size % gcore->pack;
int sizeDivide = UP_DIV(sizeQuad, numberThread);
if (sizeQuad > 0) {
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
int number = sizeDivide;
if (tId == numberThread - 1) {
number = sizeQuad - tId * sizeDivide;
}
core->MNNReluWithSlopeChannelInt8((int8_t*)(dstO + tId * gcore->pack * sizeDivide), srcO + tId * sizeDivide * gcore->pack, (const float*)(mSlope.get()), number, 1, &params, gcore->pack);
}
MNN_CONCURRENCY_END();
}
if (remain > 0) {
::memcpy(mCacheSrc.get(), srcO + sizeQuad * gcore->pack, remain);
core->MNNReluWithSlopeChannelInt8((int8_t*)mCacheDst.get(), (const int8_t*)(mCacheSrc.get()), (const float*)mSlope.get(), 1, 1, &params, gcore->pack);
::memcpy(dstO + sizeQuad * gcore->pack, mCacheDst.get(), remain);
}
return NO_ERROR;
}
int8_t zeroPoint = int8_t(outInfo[1]);
int sizeQuad = size / 16;
int remain = sizeQuad * 16;
int sizeDivide = sizeQuad / numberThread;
if (sizeQuad > 0) {
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
int number = sizeDivide;
if (tId == numberThread - 1) {
number = sizeQuad - tId * sizeDivide;
}
MNNReluInt8(dstO + 16 * tId * sizeDivide, srcO + 16 * tId * sizeDivide, number * 16, zeroPoint);
}
MNN_CONCURRENCY_END();
}
for (int i = remain; i < size; i++) {
dstO[i] = srcO[i] > zeroPoint ? srcO[i] : zeroPoint;
}
return NO_ERROR;
}
auto core = static_cast<CPUBackend*>(backend())->functions();
const uint8_t* srcO = (const uint8_t*)ib.host;
uint8_t* dstO = (uint8_t*)ob.host;
auto size = mRealSize;
auto numberThread = ((CPUBackend*)backend())->threadNumber();
int sizeQuad = size / core->pack;
int remain = size % core->pack;
int sizeDivide = sizeQuad / numberThread;
if (sizeQuad > 0) {
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
int number = sizeDivide;
if (tId == numberThread - 1) {
number = sizeQuad - tId * sizeDivide;
}
core->MNNReluWithSlopeChannel((float*)(dstO + core->pack * core->bytes * tId * sizeDivide), (const float*)(srcO + core->pack * core->bytes * tId * sizeDivide), (const float*)mSlope.get(), number, 1);
}
MNN_CONCURRENCY_END();
}
if (remain > 0) {
::memcpy(mCacheSrc.get(), srcO + sizeQuad * core->pack * core->bytes, remain * core->bytes);
core->MNNReluWithSlopeChannel((float*)(mCacheDst.get()), (const float*)(mCacheSrc.get()), (const float*)mSlope.get(), 1, 1);
::memcpy(dstO + sizeQuad * core->pack * core->bytes, mCacheDst.get(), remain * core->bytes);
}
return NO_ERROR;
}
ErrorCode CPURelu6::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto core = static_cast<CPUBackend*>(backend())->functions();
mRealSize = static_cast<CPUBackend*>(backend())->getTensorSize(inputs[0]);
if (mRealSize % core->pack != 0) {
mCacheDst.reset(core->pack * core->bytes);
mCacheSrc.reset(core->pack * core->bytes);
}
return NO_ERROR;
}
ErrorCode CPURelu6::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto& ib = inputs[0]->buffer();
auto& ob = outputs[0]->buffer();
auto core = static_cast<CPUBackend*>(backend())->functions();
const uint8_t* srcO = (const uint8_t*)ib.host;
uint8_t* dstO = (uint8_t*)ob.host;
auto size = mRealSize;
auto numberThread = ((CPUBackend*)backend())->threadNumber();
int sizeQuad = size / core->pack;
int remain = size % core->pack;
int sizeDivide = sizeQuad / numberThread;
std::vector<uint8_t> bias(core->pack * core->bytes, 0);
auto biasPtr = (float*)bias.data();
if (sizeQuad > 0) {
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
int number = sizeDivide;
if (tId == numberThread - 1) {
number = sizeQuad - tId * sizeDivide;
}
core->MNNAxByClampBroadcastUnit((float*)(dstO + core->pack * core->bytes * tId * sizeDivide), (const float*)(srcO + core->pack * core->bytes * tId * sizeDivide), biasPtr, number, 0, 0, 1, mParam.data());
}
MNN_CONCURRENCY_END();
}
if (remain > 0) {
::memcpy(mCacheSrc.get(), srcO + sizeQuad * core->pack * core->bytes, remain * core->bytes);
core->MNNAxByClampBroadcastUnit((float*)(mCacheDst.get()), (const float*)(mCacheSrc.get()), biasPtr, 1, 0, 0, 1, mParam.data());
::memcpy(dstO + sizeQuad * core->pack * core->bytes, mCacheDst.get(), remain * core->bytes);
}
return NO_ERROR;
}
CPUPRelu::CPUPRelu(Backend* b, const Op* op) : MNN::Execution(b) {
auto c = op->main_as_PRelu();
auto core = static_cast<CPUBackend*>(b)->functions();
mSlope.buffer().dimensions = 1;
mSlope.buffer().dim[0].extent = UP_DIV(c->slopeCount(), core->pack) * core->pack;
mValid = b->onAcquireBuffer(&mSlope, Backend::STATIC);
if (!mValid) {
return;
}
::memset(mSlope.host<void>(), 0, mSlope.length(0) * core->bytes);
if (core->bytes < 4) {
// For Lowp
core->MNNFp32ToLowp(c->slope()->data(), mSlope.host<int16_t>(), c->slopeCount());
} else {
::memcpy(mSlope.host<void>(), c->slope()->data(), c->slopeCount() * sizeof(float));
}
}
CPUPRelu::~CPUPRelu() {
if (mValid) {
backend()->onReleaseBuffer(&mSlope, Backend::STATIC);
}
}
ErrorCode CPUPRelu::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto core = static_cast<CPUBackend*>(backend())->functions();
if (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) {
mUseInt8 = 1;
float inputScale = TensorUtils::getDescribe(inputs[0])->quantAttr->scale;
float outputScale = TensorUtils::getDescribe(outputs[0])->quantAttr->scale;
if (outputScale == 0) {
outputScale = 0;
} else {
outputScale = 1.0f / outputScale;
}
ssize_t inputZero = static_cast<ssize_t>(TensorUtils::getDescribe(inputs[0])->quantAttr->zero);
ssize_t outputZero = static_cast<ssize_t>(TensorUtils::getDescribe(outputs[0])->quantAttr->zero);
ssize_t maxValue = static_cast<ssize_t>(TensorUtils::getDescribe(inputs[0])->quantAttr->max);
ssize_t minValue = static_cast<ssize_t>(TensorUtils::getDescribe(inputs[0])->quantAttr->min);
mQuanScalesInput.resize(1);
mQuanScalesOutput.resize(1);
mQuanZerosInput.resize(1);
mQuanZerosOutput.resize(1);
mQuanScalesInput = {inputScale};
mQuanScalesOutput = {outputScale};
mQuanZerosInput = {inputZero};
mQuanZerosOutput = {outputZero};
}
return NO_ERROR;
}
ErrorCode CPUPRelu::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto& ib = inputs[0]->buffer();
auto& ob = outputs[0]->buffer();
auto core = static_cast<CPUBackend*>(backend())->functions();
auto coreInt8 = static_cast<CPUBackend*>(backend())->int8Functions();
const int channel = ib.dim[1].extent;
const int batch = ib.dim[0].extent;
int pack = core->pack;
const int8_t* srcO = (const int8_t*)ib.host;
uint8_t* dstO = (uint8_t*)ob.host;
auto depthQuad = UP_DIV(channel, core->pack);
auto totalCount = batch * depthQuad;
auto numberThread = ((CPUBackend*)backend())->threadNumber();
auto sizeQuad = UP_DIV(depthQuad, numberThread);
auto sizeCount = sizeQuad * batch * inputs[0]->width() * inputs[0]->height() * core->pack;
if (mUseInt8) {
auto inputInfo = TensorUtils::getDescribe(inputs[0])->quantAttr;
auto outputInfo = TensorUtils::getDescribe(outputs[0])->quantAttr;
auto inzero = (ssize_t)inputInfo->zero;
auto outzero = (ssize_t)outputInfo->zero;
auto outscale = outputInfo->scale > 0 ? 1.f / outputInfo->scale : 0.f;
QuanPrePostParameters params;
params.maxValue = static_cast<ssize_t>(outputInfo->max);
params.minValue = static_cast<ssize_t>(outputInfo->min);
params.inputScale = &inputInfo->scale;
params.inputZeroPoint = &inzero;
params.outputScale = &outscale;
params.outputZeroPoint = &outzero;
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
auto number = ALIMIN(sizeQuad, depthQuad - tId * sizeQuad);
if (number > 0) {
auto sizeQ = number * batch * inputs[0]->width() * inputs[0]->height();
coreInt8->MNNReluWithSlopeChannelInt8((int8_t*)(dstO + tId * sizeCount), srcO + tId * sizeCount, (const float*)(mSlope.host<uint8_t>() + tId * sizeQuad * pack * core->bytes), sizeQ / number, number, &params, core->pack);
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
int hw = 1;
for (int i=2; i<ib.dimensions; ++i) {
hw *= ib.dim[i].extent;
}
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
for (int b=tId; b<totalCount; b+=numberThread) {
auto c = b / batch;
core->MNNReluWithSlopeChannel((float*)(dstO + hw * core->bytes * core->pack * b), (const float*)(srcO + hw * core->pack * core->bytes * b), (const float*)(mSlope.host<uint8_t>() + core->bytes * core->pack * c), hw, 1);
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
class CPUReluCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const {
if (op->type() == OpType_ReLU) {
auto slope = 0.0f;
if (nullptr != op->main() && OpParameter_Relu == op->main_type()) {
slope = op->main_as_Relu()->slope();
}
return new CPURelu(backend, slope);
}
MNN_ASSERT(op->type() == OpType_PReLU);
if (op->main_as_PRelu()->slopeCount() == 1) {
return new CPURelu(backend, op->main_as_PRelu()->slope()->data()[0]);
}
return new CPUPRelu(backend, op);
}
};
class CPURelu6Creator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const {
float minV = 0.0f;
float maxV = 6.0f;
if (nullptr != op->main()) {
auto p = op->main_as_Relu6();
minV = p->minValue();
maxV = p->maxValue();
}
return new CPURelu6(maxV, minV, backend);
}
};
REGISTER_CPU_OP_CREATOR(CPUReluCreator, OpType_ReLU);
REGISTER_CPU_OP_CREATOR(CPUReluCreator, OpType_PReLU);
REGISTER_CPU_OP_CREATOR(CPURelu6Creator, OpType_ReLU6);
} // namespace MNN