mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			40 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			40 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeConst.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "core/Macro.h"
 | |
| #include "core/SizeComputer.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| class ConstComputer : public SizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         //MNN_ASSERT(0 == inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|         // copy dims
 | |
|         auto output    = outputs[0];
 | |
|         auto parameter = op->main_as_Blob();
 | |
| 
 | |
|         output->buffer().dimensions = parameter->dims() ? parameter->dims()->size() : 0;
 | |
|         for (int i = 0; i < output->buffer().dimensions; i++) {
 | |
|             output->buffer().dim[i].extent = parameter->dims()->Get(i);
 | |
|         }
 | |
| 
 | |
|         output->setType(parameter->dataType());
 | |
|         TensorUtils::getDescribe(output)->dimensionFormat = parameter->dataFormat();
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(ConstComputer, OpType_Const);
 | |
| REGISTER_SHAPE(ConstComputer, OpType_TrainableParam);
 | |
| 
 | |
| } // namespace MNN
 |