mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			71 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			71 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapePool3D.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| #include "core/Macro.h"
 | |
| #include "core/SizeComputer.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| class Pool3DSizeComputer : public SizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(1 == inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
| 
 | |
|         auto input  = inputs[0];
 | |
|         auto output = outputs[0];
 | |
|         
 | |
|         for (unsigned int i = 0; i < input->buffer().dimensions; ++i) {
 | |
|             MNN_ASSERT(input->buffer().dim[i].extent > 0);
 | |
|         }
 | |
|         output->buffer().dimensions = input->buffer().dimensions;
 | |
|         output->buffer().dim[0] = input->buffer().dim[0];
 | |
|         output->buffer().dim[1] = input->buffer().dim[1];
 | |
| 
 | |
|         auto layer = op->main_as_Pool3D();
 | |
|         for (unsigned int i = 0; i < input->dimensions() - 2; ++i) {
 | |
|             int inputLength = input->buffer().dim[i + 2].extent, outputLength = 0;
 | |
|             const int kernel = (*layer->kernels())[i], stride = (*layer->strides())[i];
 | |
|             
 | |
|             if (layer->padType() == PoolPadType_CAFFE) {
 | |
|                 int pad = (*layer->pads())[i];
 | |
|                 outputLength = (inputLength + 2 * pad - kernel) / stride + 1;
 | |
|             } else if (layer->padType() == PoolPadType_SAME) {
 | |
|                 outputLength = UP_DIV(inputLength, stride);
 | |
|             } else if (layer->padType() == PoolPadType_VALID) {
 | |
|                 outputLength = (inputLength - kernel) / stride + 1;
 | |
|             } else {
 | |
|                 MNN_ERROR("PoolPadType %d not support\n", layer->padType());
 | |
|             }
 | |
|             if (outputLength <= 0) {
 | |
|                 return false;
 | |
|             }
 | |
|             output->buffer().dim[i + 2].extent = outputLength;
 | |
|         }
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         output->buffer().type          = input->buffer().type;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                  const std::vector<Tensor*>& outputs) const override {
 | |
|         auto size  = (float)outputs[0]->elementSize() / 1024.0f / 1024.0f;
 | |
|         auto layer = op->main_as_Pool3D();
 | |
|         float flopsPerElement = 1;
 | |
|         for (auto kernel: *layer->kernels()) {
 | |
|             flopsPerElement *= kernel;
 | |
|         }
 | |
|         return size * flopsPerElement;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(Pool3DSizeComputer, OpType_Pooling3D);
 | |
| } // namespace MNN
 |