mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			60 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			60 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeQuantizedReshape.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| #ifdef MNN_SUPPORT_TFLITE_QUAN
 | |
| #include "core/Macro.h"
 | |
| #include "core/SizeComputer.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| class QuantizedReshapeComputer : public SizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         auto layer_param = op->main_as_QuantizedReshape();
 | |
| 
 | |
|         auto input  = inputs[0];
 | |
|         auto output = outputs[0];
 | |
| 
 | |
|         const int32_t* dim_data = nullptr;
 | |
|         int32_t dimSize         = 0;
 | |
|         dimSize  = layer_param->dims()->size();
 | |
|         dim_data = layer_param->dims()->data();
 | |
|         int num_element = 1;
 | |
|         for (int i = 0; i < input->buffer().dimensions; i++) {
 | |
|             num_element *= input->buffer().dim[i].extent;
 | |
|         }
 | |
| 
 | |
|         output->buffer().dimensions = dimSize;
 | |
| 
 | |
|         int count_non_minus1 = 1;
 | |
|         for (int i = 0; i < dimSize; i++) {
 | |
|             if (dim_data[i] != -1) {
 | |
|                 count_non_minus1 *= dim_data[i];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         MNN_ASSERT((num_element % count_non_minus1) == 0)
 | |
| 
 | |
|         for (int i = 0; i < dimSize; i++) {
 | |
|             int shape_dim = dim_data[i];
 | |
|             if (shape_dim == -1) {
 | |
|                 shape_dim = num_element / count_non_minus1;
 | |
|             }
 | |
|             output->buffer().dim[i].extent = shape_dim;
 | |
|         }
 | |
| 
 | |
|         output->setType(DataType_DT_UINT8);
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(QuantizedReshapeComputer, OpType_QuantizedReshape);
 | |
| } // namespace MNN
 | |
| #endif
 |