MNN/source/shape/ShapeQuantizedReshape.cpp

60 lines
1.7 KiB
C++

//
// ShapeQuantizedReshape.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifdef MNN_SUPPORT_TFLITE_QUAN
#include "core/Macro.h"
#include "core/SizeComputer.hpp"
namespace MNN {
class QuantizedReshapeComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto layer_param = op->main_as_QuantizedReshape();
auto input = inputs[0];
auto output = outputs[0];
const int32_t* dim_data = nullptr;
int32_t dimSize = 0;
dimSize = layer_param->dims()->size();
dim_data = layer_param->dims()->data();
int num_element = 1;
for (int i = 0; i < input->buffer().dimensions; i++) {
num_element *= input->buffer().dim[i].extent;
}
output->buffer().dimensions = dimSize;
int count_non_minus1 = 1;
for (int i = 0; i < dimSize; i++) {
if (dim_data[i] != -1) {
count_non_minus1 *= dim_data[i];
}
}
MNN_ASSERT((num_element % count_non_minus1) == 0)
for (int i = 0; i < dimSize; i++) {
int shape_dim = dim_data[i];
if (shape_dim == -1) {
shape_dim = num_element / count_non_minus1;
}
output->buffer().dim[i].extent = shape_dim;
}
output->setType(DataType_DT_UINT8);
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
return true;
}
};
REGISTER_SHAPE(QuantizedReshapeComputer, OpType_QuantizedReshape);
} // namespace MNN
#endif