mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			34 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			34 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeWhere.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "core/Macro.h"
 | |
| #include "core/SizeComputer.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| class WhereSizeComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(1 == inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
|         auto& ib = inputs[0]->buffer();
 | |
|         auto& ob = outputs[0]->buffer();
 | |
|         MNN_ASSERT(ib.type.code == halide_type_int);
 | |
|         ob.dimensions = 2;
 | |
|         // Assume all elements are true
 | |
|         ob.dim[0].extent = inputs[0]->elementSize();
 | |
|         ob.dim[1].extent = ib.dimensions;
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         outputs[0]->buffer().type = halide_type_of<int32_t>();
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE_INPUTS(WhereSizeComputer, OpType_Where, {0});
 | |
| } // namespace MNN
 |