mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			52 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			52 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeCosineSimilarity.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/7/17.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/SizeComputer.hpp"
 | 
						|
#include "core/TensorUtils.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
class CosineSimilaritySize : public SizeComputer {
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(4 == inputs.size());
 | 
						|
        auto x1        = inputs[0];
 | 
						|
        auto x2        = inputs[1];
 | 
						|
        auto dimTensor = inputs[2];
 | 
						|
        const auto dim = dimTensor->host<int32_t>()[0];
 | 
						|
        MNN_ASSERT(dim == 1);
 | 
						|
 | 
						|
        const int dimensions0 = x1->dimensions();
 | 
						|
        const int dimensions1 = x2->dimensions();
 | 
						|
        MNN_ASSERT(dimensions0 == dimensions1);
 | 
						|
        for (int i = 0; i < dimensions0; ++i) {
 | 
						|
            MNN_ASSERT(x1->length(i) == x2->length(i));
 | 
						|
        }
 | 
						|
 | 
						|
        auto output                 = outputs[0];
 | 
						|
        output->buffer().dimensions = dimensions0 - 1;
 | 
						|
        for (int i = 0; i < dimensions0; ++i) {
 | 
						|
            int index = i;
 | 
						|
            if (i == dim) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            if (i > dim) {
 | 
						|
                index = i - 1;
 | 
						|
            }
 | 
						|
            output->setLength(index, x1->length(i));
 | 
						|
        }
 | 
						|
        output->buffer().type = x1->getType();
 | 
						|
        TensorUtils::getDescribe(output)->dimensionFormat = MNN_DATA_FORMAT_NCHW;
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE(CosineSimilaritySize, OpType_CosineSimilarity);
 | 
						|
 | 
						|
} // namespace MNN
 |