mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			57 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			57 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeDetectionPostProcess.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/10/29.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
 | 
						|
#include "core/SizeComputer.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
 | 
						|
class DetectionPostProcessSize : public SizeComputer {
 | 
						|
public:
 | 
						|
    bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | 
						|
                       const std::vector<Tensor *> &outputs) const override {
 | 
						|
        MNN_CHECK(inputs.size() == 3, "DetectionPostProcess should have 3 inputs!");
 | 
						|
        MNN_CHECK(outputs.size() == 4, "DetectionPostProcess should have 4 outputs!");
 | 
						|
 | 
						|
        auto postProcess           = op->main_as_DetectionPostProcessParam();
 | 
						|
        const int numDetectedBoxes = postProcess->maxDetections() * postProcess->maxClassesPerDetection();
 | 
						|
 | 
						|
        const int bathSize = inputs[0]->batch();
 | 
						|
 | 
						|
        // Outputs: detection_boxes, detection_scores, detection_classes,
 | 
						|
        // num_detections
 | 
						|
        auto detectionBoxes                 = outputs[0];
 | 
						|
        detectionBoxes->buffer().dimensions = 3;
 | 
						|
        detectionBoxes->setLength(0, bathSize);
 | 
						|
        detectionBoxes->setLength(1, numDetectedBoxes);
 | 
						|
        detectionBoxes->setLength(2, 4);
 | 
						|
        detectionBoxes->buffer().type = halide_type_of<float>();
 | 
						|
 | 
						|
        auto detectionClasses                 = outputs[1];
 | 
						|
        detectionClasses->buffer().dimensions = 2;
 | 
						|
        detectionClasses->setLength(0, bathSize);
 | 
						|
        detectionClasses->setLength(1, numDetectedBoxes);
 | 
						|
        detectionClasses->buffer().type = halide_type_of<float>();
 | 
						|
 | 
						|
        auto detectionScores                 = outputs[2];
 | 
						|
        detectionScores->buffer().dimensions = 2;
 | 
						|
        detectionScores->setLength(0, bathSize);
 | 
						|
        detectionScores->setLength(1, numDetectedBoxes);
 | 
						|
        detectionScores->buffer().type = halide_type_of<float>();
 | 
						|
 | 
						|
        auto numDetections                 = outputs[3];
 | 
						|
        numDetections->buffer().dimensions = 1;
 | 
						|
        numDetections->setLength(0, 1);
 | 
						|
        numDetections->buffer().type = halide_type_of<float>();
 | 
						|
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE(DetectionPostProcessSize, OpType_DetectionPostProcess);
 | 
						|
 | 
						|
} // namespace MNN
 |