mirror of https://github.com/alibaba/MNN.git
63 lines
2.4 KiB
C++
63 lines
2.4 KiB
C++
//
|
|
// ConvolutionWinogradBridge.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2022/01/20.
|
|
// Copyright © 2018 - 2022, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/cpu/CPUConvolution.hpp"
|
|
#include "backend/cpu/compute/ConvolutionWinogradImpl.hpp"
|
|
#include "backend/cpu/compute/ConvolutionWinogradBridge.hpp"
|
|
#include "backend/cpu/compute/ConvolutionPackFreeWinograd.hpp"
|
|
#include "backend/cpu/compute/ConvolutionPackWinograd.hpp"
|
|
|
|
namespace MNN {
|
|
|
|
|
|
WinogradConfig ConvolutionWinogradBridge::bestWinogradUnit(const Convolution2DCommon *common, const Tensor *inputTensor,
|
|
const Tensor *outputTensor, int threadNumber, Backend* b, const PerfConfig& denseConfig) {
|
|
|
|
// Currently packfree is only used in x86 architecture
|
|
#ifdef MNN_USE_SSE
|
|
auto core = static_cast<CPUBackend*>(b)->functions();
|
|
if (16 == core->pack) { // avx512
|
|
return ConvolutionPackFreeWinograd::bestWinogradUnit(common, inputTensor, outputTensor, threadNumber, b, denseConfig);
|
|
} else {
|
|
#endif
|
|
return ConvolutionPackWinograd::bestWinogradUnit(common, inputTensor, outputTensor, threadNumber, b, denseConfig);
|
|
|
|
#ifdef MNN_USE_SSE
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
bool ConvolutionWinogradBridge::canUseWinograd(const Convolution2DCommon *common) {
|
|
return ConvolutionPackWinograd::canUseWinograd(common);
|
|
}
|
|
|
|
ConvolutionWinogradImpl *ConvolutionWinogradBridge::createWinogradImpl(const Convolution2DCommon *common,
|
|
const Tensor *input, const Tensor *output,
|
|
Backend *b, const float *originWeight,
|
|
size_t originWeightSize, const float *bias,
|
|
size_t biasSize, WinogradConfig config) {
|
|
|
|
#ifdef MNN_USE_SSE
|
|
auto core = static_cast<CPUBackend*>(b)->functions();
|
|
// Adopt different algorithm for x86 and arm
|
|
if (16 == core->pack) { // avx512
|
|
return new ConvolutionPackFreeWinograd(common, input, output, b, originWeight, originWeightSize, bias, biasSize,
|
|
config);
|
|
} else {
|
|
#endif
|
|
|
|
return new ConvolutionPackWinograd(common, input, output, b, originWeight, originWeightSize, bias, biasSize,
|
|
config);
|
|
#ifdef MNN_USE_SSE
|
|
}
|
|
#endif
|
|
}
|
|
|
|
} // namespace MNN
|