MNN/source/backend/cpu/compute/GemmInt8Executor.cpp

250 lines
11 KiB
C++

//
// GemmInt8Executor.cpp
// MNNCPU
//
// Created by MNN on 2023/3/16.
//
#include "GemmInt8Executor.hpp"
#include "ConvolutionTiledExecutor.hpp"
#include "CommonOptFunction.h"
#include "core/Macro.h"
#include "core/BufferAllocator.hpp"
#include "core/Concurrency.h"
#include "core/TensorUtils.hpp"
namespace MNN {
static void _makeResource(Backend* backend, std::shared_ptr<CPUConvolution::Resource> resource, const MNN::Op *op, std::shared_ptr<CPUConvolution::ResourceInt8> resourceInt8) {
/* Used to compute weight quant scale and bias and weightKernelSum of type float. */
auto conv2d = op->main_as_Convolution2D();
bool quanBuffer = (conv2d->quanParameter() != nullptr && conv2d->quanParameter()->buffer() != nullptr);
MNN_ASSERT(quanBuffer || resourceInt8);
resource->backend = backend;
auto core = static_cast<CPUBackend*>(backend)->functions();
// common parameters
int outputCount = conv2d->common()->outputCount();
int LSize = conv2d->common()->inputCount() * conv2d->common()->kernelX() * conv2d->common()->kernelY();
int ocUp4 = ROUND_UP(outputCount, core->pack);
int8_t* weightOrigin;
// Save weight quant scale and bias: wf=scale*wi+bias
resource->mDequantize.mScaleBias.reset(Tensor::createDevice<uint8_t>({2 * ocUp4 * core->bytes}));
auto success = resource->backend->onAcquireBuffer(resource->mDequantize.mScaleBias.get(), Backend::STATIC);
if (!success) {
MNN_ERROR("Alloc denquant scaleBias memory error\n");
return;
}
auto alphaPtr = resource->mDequantize.mScaleBias->host<float>();
auto biasPtr = reinterpret_cast<float*>(reinterpret_cast<uint8_t*>(alphaPtr) + ocUp4 * core->bytes);
::memset(alphaPtr, 0, 2 * ocUp4 * core->bytes);
auto wZero = resourceInt8->mWeightQuantZero->host<int32_t>(); // has packed to outputUp4
auto wScale = resourceInt8->mOriginScale->host<float>();
int h = ocUp4;
for (int i=0; i< h; ++i) {
alphaPtr[i] = wScale[i];
biasPtr[i] = (-1.f) * wZero[i] * wScale[i];
}
}
GemmInt8Executor::GemmInt8Executor(Backend* bn, std::shared_ptr<ResourceInt8> resource, const Op *op, decltype(CoreInt8Functions::Int8GemmKernel) gemmKernel, std::vector<int32_t> bias) :
CPUConvolution(op->main_as_Convolution2D()->common(), bn), mResourceInt8(resource), mMutableResource(resource, bn), mGemmKernel(gemmKernel), mQuantBias(bias){
mResource.reset(new Resource);
_makeResource(bn, mResource, op, mResourceInt8);
}
GemmInt8Executor::~GemmInt8Executor() {
// Do nothing
}
/*
Deconvolution forward:
Input (N⋅IW⋅IH, IC)
Weight (IC, OC⋅KW⋅KH)
Output (N⋅IW⋅IH, OC⋅KW⋅KH)
*/
ErrorCode GemmInt8Executor::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto outputQuanInfo = TensorUtils::getQuantInfo(outputs[0]);
outputQuanInfo[0] = 1.0f;
mMutableResource.updateInputOutputScale(TensorUtils::getQuantInfo(inputs[0]), outputQuanInfo);
//CPUConvolution::onResize(inputs, outputs);
auto input = inputs[0];
auto output = outputs[0];
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
int UNIT__, SRC_UNIT, DST_XUNIT;
core->MNNGetGemmUnit(&UNIT__, &SRC_UNIT, &DST_XUNIT);
auto gcore = static_cast<CPUBackend*>(backend())->functions();
auto pack = gcore->pack;
auto scaleSrc = mMutableResource.mScaleFloat->host<float>();
int realWeightQuantScaleSize = mResource->mDequantize.mScaleBias->size() / 2;
auto weightBiasSrc = reinterpret_cast<float*>(mResource->mDequantize.mScaleBias->host<uint8_t>() + realWeightQuantScaleSize);
auto ocDivUp = UP_DIV(output->channel(), pack) * pack;
mKernelY = mCommon->kernelY();
mKernelX = mCommon->kernelX();
int kernelCount = mKernelX * mKernelY;
std::vector<float> scaleData(ocDivUp);
mKernelSum.resize(ocDivUp, 0);
::memset(scaleData.data(), 0.f, ocDivUp * sizeof(float));
auto l = mMutableResource.mScaleFloat->length(0);
auto lU = UP_DIV(l, pack);
for (int divC = 0; divC < lU; ++divC) {
auto srcX = scaleSrc + divC * pack;
auto wbias = weightBiasSrc + divC * pack;
for (int k = 0; k < kernelCount; ++k) {
int indexK = divC * kernelCount * pack + k * pack;
for (int j = 0; j < pack; ++j) {
scaleData[indexK + j] = srcX[j];
mKernelSum[indexK + j] = wbias[j];
}
}
}
float* biasFloat = reinterpret_cast<float*>(mQuantBias.data());
for (int i = 0; i < mQuantBias.size(); ++i) {
biasFloat[i] = mQuantBias[i] * scaleData[i];
}
mScaleData = scaleData;
const auto IC4 = UP_DIV(input->channel(), pack);
ConvolutionTiledExecutor::setIm2ColParameter(mIm2ColParamter, mCommon, input, output, 0, 0, static_cast<CPUBackend*>(backend())->functions(), core);
auto originKernelCount = mCommon->kernelX() * mCommon->kernelY();
mIm2ColParamter.strideX = 1;
mIm2ColParamter.strideY = 1;
mIm2ColParamter.kernelX = 1;
mIm2ColParamter.kernelY = 1;
mIm2ColParamter.padX = 0;
mIm2ColParamter.padY = 0;
if (SRC_UNIT > pack) {
const auto srcCountUnit = UP_DIV(input->channel(), pack);
mIm2ColParamter.kernelCountUnit = UP_DIV(srcCountUnit, SRC_UNIT / pack);
mIm2ColParamter.ic = mIm2ColParamter.icDiv4 * pack;
} else {
const auto srcCountUnit = UP_DIV(input->channel(), SRC_UNIT);
mIm2ColParamter.kernelCountUnit = srcCountUnit;
mIm2ColParamter.ic = srcCountUnit * SRC_UNIT;
}
mTileCnt = UP_DIV(input->height() * input->width() * input->batch(), DST_XUNIT);
const int threads = std::max(static_cast<CPUBackend*>(backend())->threadNumber(), 1);
mThreadNums = std::min(threads, mTileCnt);
mInputCol.reset(Tensor::createDevice<int8_t>({mThreadNums, DST_XUNIT, mIm2ColParamter.kernelCountUnit * SRC_UNIT}));
bool success = backend()->onAcquireBuffer(mInputCol.get(), Backend::DYNAMIC);
if (!success) {
return OUT_OF_MEMORY;
}
auto bufferAlloc = static_cast<CPUBackend*>(backend())->getBufferAllocator();
auto blitInfoSize = ConvolutionTiledExecutor::computeBlitInfoSize(DST_XUNIT, mIm2ColParamter.ow, mIm2ColParamter.kernelX * mIm2ColParamter.kernelY, mThreadNums);
mBlitInfo = bufferAlloc->alloc(blitInfoSize.first);
if (mBlitInfo.invalid()) {
return OUT_OF_MEMORY;
}
bufferAlloc->free(mBlitInfo);
mBlitInfoStride = blitInfoSize.second;
backend()->onReleaseBuffer(mInputCol.get(), Backend::DYNAMIC);
return NO_ERROR;
}
ErrorCode GemmInt8Executor::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
const auto input = inputs[0];
auto output = outputs[0];
auto batch = output->batch();
const auto kEleCnt = mKernelX * mKernelY;
const int outplane = output->height() * output->width() * output->batch();
const int inputplane = input->height() * input->width();
auto gcore = static_cast<CPUBackend*>(backend())->functions();
auto arch_pack = gcore->pack;
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
int UNIT__, SRC_UNIT, DST_XUNIT;
core->MNNGetGemmUnit(&UNIT__, &SRC_UNIT, &DST_XUNIT);
int PackUnit = static_cast<CPUBackend*>(backend())->functions()->pack;
auto blitProc = core->MNNPackC4Int8ForMatMul_A;
const int dstZStep = outplane * PackUnit;
const int ocDiv4 = UP_DIV(output->channel(), PackUnit); // Here, output->channel() = oc*kw*kh
const auto src_depth_quad = mIm2ColParamter.kernelCountUnit;
const auto inputDataPtr = input->host<int8_t>();
const auto weightDataPtr = inputs[1]->host<int8_t>();
auto im2colPtr = mInputCol->host<int8_t>();
auto outputDataPtr = output->host<float>();
auto bias_elesize = ocDiv4 * PackUnit;
QuanPostTreatParameters quanParam;
quanParam.scale = mScaleData.data();
quanParam.maxValue = mMutableResource.mClampMax;
if (mResourceInt8->mRelu) {
quanParam.minValue = mMutableResource.mOutputZeroPoint;
} else {
quanParam.minValue = mMutableResource.mClampMin;
}
auto postParameters = getPostParameters();
std::vector<float> fp32minmax = {postParameters[2], postParameters[3]};
quanParam.fp32minmax = fp32minmax.data();
quanParam.useInt8 = 0; // Save result as float data type.
quanParam.biasFloat = reinterpret_cast<float*>(mQuantBias.data());
quanParam.weightQuanBias = mKernelSum.data();
quanParam.extraScale = nullptr;
float dequantScale = mMutableResource.mResource->mInputScale;
SumByAxisParams sumParams;
sumParams.DST_XUNIT = DST_XUNIT;
sumParams.SRC_UNIT = SRC_UNIT;
sumParams.blockNum = 1;
sumParams.kernelCountUnitDouble = mIm2ColParamter.kernelCountUnit;
sumParams.oneScale = 1;
sumParams.col_buffer_unit_size = mInputCol->stride(0);
auto threadFunction = [&](int tId) {
auto colAddr = im2colPtr + tId * mInputCol->stride(0);
auto col_buffer_size = mInputCol->stride(0);
int32_t info[5];
info[1] = mIm2ColParamter.iw * mIm2ColParamter.ih * batch;
info[2] = DST_XUNIT;
info[3] = mIm2ColParamter.strideX;
float paramsf[1];
paramsf[0] = dequantScale;
auto srcPtr = (int8_t const **)(mBlitInfo.ptr() + tId * mBlitInfoStride.first);
auto el = (int32_t *)(srcPtr + mBlitInfoStride.second);
for (int tIndex = tId; tIndex < mTileCnt; tIndex += mThreadNums) {
const int xIndexStart = tIndex * DST_XUNIT;
const int realDstCount = ALIMIN(outplane - xIndexStart, DST_XUNIT);
// im2col
auto res = ConvolutionTiledExecutor::turnIm2ColToBlitInfo((const float**)srcPtr, el, xIndexStart, realDstCount, mIm2ColParamter, (const uint8_t*)inputDataPtr, 1);
int number = res.first;
bool needZero = res.second;
if (needZero) {
#ifdef MNN_USE_SSE
::memset(colAddr, mMutableResource.mInputZeroPoint + 128, col_buffer_size);
#else
::memset(colAddr, mMutableResource.mInputZeroPoint, col_buffer_size);
#endif
}
info[0] = number;
info[4] = realDstCount;
std::vector<float> xKernelSum(realDstCount);
if (number > 0) {
blitProc(colAddr, srcPtr, info, el);
}
if (mResourceInt8->mWeightAsymmetricQuant) {
gcore->MNNSumByAxisLForMatmul_A(xKernelSum.data(), colAddr, &dequantScale, realDstCount, sumParams);
}
quanParam.srcKernelSum = xKernelSum.data();
auto outputInTilePtr = outputDataPtr + xIndexStart * PackUnit;
mGemmKernel((int8_t*)outputInTilePtr, colAddr, weightDataPtr, src_depth_quad, dstZStep * sizeof(float), ocDiv4, &quanParam, realDstCount);
}
};
MNN_CONCURRENCY_BEGIN(tId, mThreadNums) {
threadFunction((int)tId);
}
MNN_CONCURRENCY_END();
// MNN_PRINT("deconv int8 execute: cost time: %llu us\n", kernelTimer.durationInUs());
return NO_ERROR;
}
} // namespace MNN