mirror of https://github.com/alibaba/MNN.git
174 lines
6.1 KiB
Plaintext
174 lines
6.1 KiB
Plaintext
//
|
|
// MultiInputDeconvExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2023/04/24.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "MultiInputDeconvExecution.hpp"
|
|
#include "ConvBaseKernel.cuh"
|
|
#include "DeconvBaseKernel.cuh"
|
|
|
|
//#define DEBUG
|
|
|
|
namespace MNN {
|
|
namespace CUDA {
|
|
|
|
MultiInputDeconvExecution::MultiInputDeconvExecution(const MNN::Op* op, Backend* backend) : CutlassDeconvCommonExecution(backend) {
|
|
mOp = op;
|
|
auto runtime = static_cast<CUDABackend*>(backend)->getCUDARuntime();
|
|
mPrecisonLevel = static_cast<CUDABackend*>(backend)->getPrecision();
|
|
mFp16Infer = (mPrecisonLevel == 2);
|
|
mFp32Infer = (mPrecisonLevel == 1);
|
|
mFp16Fp32MixInfer = (mPrecisonLevel == 0);
|
|
}
|
|
|
|
MultiInputDeconvExecution::~MultiInputDeconvExecution() {
|
|
|
|
}
|
|
|
|
|
|
ErrorCode MultiInputDeconvExecution::onResize(const std::vector<Tensor*> &inputs, const std::vector<Tensor*> &outputs) {
|
|
auto runtime = static_cast<CUDABackend*>(backend())->getCUDARuntime();
|
|
auto input = inputs[0], output = outputs[0];
|
|
auto bytes = static_cast<CUDABackend*>(backend())->getBytes(inputs[0]);
|
|
auto convCommon = mOp->main_as_Convolution2D()->common();
|
|
|
|
// Col2Im Param
|
|
auto pad = ConvolutionCommon::convolutionTransposePad(input, output, mOp->main_as_Convolution2D()->common());
|
|
mCol2ImParamter.dilateX = convCommon->dilateX();
|
|
mCol2ImParamter.dilateY = convCommon->dilateY();
|
|
mCol2ImParamter.strideX = convCommon->strideX();
|
|
mCol2ImParamter.strideY = convCommon->strideY();
|
|
mCol2ImParamter.ic = input->channel();
|
|
mCol2ImParamter.oc = output->channel();
|
|
mCol2ImParamter.kernelX = convCommon->kernelX();
|
|
mCol2ImParamter.kernelY = convCommon->kernelY();
|
|
mCol2ImParamter.padX = pad.first;
|
|
mCol2ImParamter.padY = pad.second;
|
|
|
|
mCol2ImParamter.ih = input->height();
|
|
mCol2ImParamter.iw = input->width();
|
|
mCol2ImParamter.oh = output->height();
|
|
mCol2ImParamter.ow = output->width();
|
|
mCol2ImParamter.ob = output->batch();
|
|
|
|
|
|
mActivationType = convCommon->relu() ? 1 : convCommon->relu6() ? 2 : 0;
|
|
|
|
|
|
mKernelInfo.kernelX = convCommon->kernelX();
|
|
mKernelInfo.kernelY = convCommon->kernelY();
|
|
mKernelInfo.groups = convCommon->group();
|
|
mKernelInfo.strideX = convCommon->strideX();
|
|
mKernelInfo.strideY = convCommon->strideY();
|
|
mKernelInfo.dilateX = convCommon->dilateX();
|
|
mKernelInfo.dilateY = convCommon->dilateY();
|
|
mKernelInfo.activationType = mActivationType;
|
|
mKernelInfo.kernelN = output->channel();
|
|
mKernelInfo.kernelC = input->channel();
|
|
|
|
// Matmul Param
|
|
int e = output->channel() * mKernelInfo.kernelX * mKernelInfo.kernelY;
|
|
int l = input->channel();
|
|
int h = input->height() * input->width() * output->batch();
|
|
|
|
mGemmInfo.elh[0] = e;
|
|
mGemmInfo.elh[1] = l;
|
|
mGemmInfo.elh[2] = h;
|
|
mGemmInfo.elhPad[0] = UP_DIV(e, PACK_NUMBER) * PACK_NUMBER;
|
|
mGemmInfo.elhPad[1] = UP_DIV(l, PACK_NUMBER) * PACK_NUMBER;
|
|
mGemmInfo.elhPad[2] = UP_DIV(h, PACK_NUMBER) * PACK_NUMBER;
|
|
|
|
|
|
// Alloc temp cuda memory
|
|
auto pool = static_cast<CUDABackend*>(backend())->getBufferPool();
|
|
MemChunk buffer_input, buffer_im2col;
|
|
if(mFp16Fp32MixInfer) {
|
|
buffer_input = pool->alloc(sizeof(__half) * mGemmInfo.elhPad[1] * mGemmInfo.elh[2]);
|
|
mInputBuffer = (void*)buffer_input.ptr();
|
|
} else {
|
|
mInputBuffer = (void*)input->deviceId();
|
|
}
|
|
buffer_im2col = pool->alloc(bytes * mGemmInfo.elh[0] * mGemmInfo.elhPad[2]);
|
|
mIm2ColBuffer = (void*)buffer_im2col.ptr();
|
|
|
|
mNeedWeightFill = (mGemmInfo.elh[1] != mGemmInfo.elhPad[1]);
|
|
MemChunk buffer_filter;
|
|
if(mNeedWeightFill) {
|
|
buffer_filter = pool->alloc(bytes * (size_t)mGemmInfo.elh[0] * (size_t)mGemmInfo.elhPad[1]);
|
|
mFilterAddr = (void*)buffer_filter.ptr();
|
|
} else {
|
|
mFilterAddr = (void*)inputs[1]->deviceId();
|
|
}
|
|
|
|
|
|
if(mFp16Fp32MixInfer || mFp32Infer) {
|
|
mZeroTensor.reset(Tensor::createDevice<uint32_t>({mGemmInfo.elhPad[2]}));
|
|
} else {
|
|
mZeroTensor.reset(Tensor::createDevice<uint16_t>({mGemmInfo.elhPad[2]}));
|
|
}
|
|
static_cast<CUDABackend*>(backend())->onAcquireBuffer(mZeroTensor.get(), Backend::STATIC);
|
|
|
|
mZeroPtr = (void *)mZeroTensor.get()->buffer().device;
|
|
cuda_check(cudaMemset(mZeroPtr, 0, mGemmInfo.elhPad[2]*bytes));
|
|
|
|
|
|
// free for Reuse
|
|
if(mFp16Fp32MixInfer) {
|
|
pool->free(buffer_input);
|
|
}
|
|
pool->free(buffer_im2col);
|
|
if(mNeedWeightFill) {
|
|
pool->free(buffer_filter);
|
|
}
|
|
|
|
// Call from different function
|
|
if(mFp32Infer){
|
|
return callCutlassGemmCudaCoreFloat32(inputs, outputs);
|
|
}
|
|
|
|
mGpuComputeCap = runtime->compute_capability();
|
|
//MNN_PRINT("Gpu smArch is sm_%d\n", mGpuComputeCap);
|
|
if(mGpuComputeCap < 75) {
|
|
return callCutlassGemmCudaCoreFloat16(inputs, outputs);
|
|
}
|
|
return callCutlassGemmTensorCore(inputs, outputs);
|
|
}
|
|
|
|
ErrorCode MultiInputDeconvExecution::onExecute(const std::vector<Tensor*> &inputs, const std::vector<Tensor*> &outputs) {
|
|
auto runtime = static_cast<CUDABackend*>(backend())->getCUDARuntime();
|
|
const void *input_addr = (const void*)inputs[0]->deviceId();
|
|
void *output_addr = (void*)outputs[0]->deviceId();
|
|
if(inputs.size() > 2) {
|
|
mBiasAddr = (void*)inputs[2]->deviceId();
|
|
}
|
|
|
|
// Do input convert
|
|
if(mFp16Fp32MixInfer) {
|
|
size_t maxCount = mGemmInfo.elhPad[1] * mGemmInfo.elh[2];
|
|
callFloat2Half((const void*)input_addr, (void*)mInputBuffer, maxCount, runtime);
|
|
}
|
|
|
|
// Do weight Reoreder
|
|
if(mNeedWeightFill) {
|
|
callWeightReorder((const void *)inputs[1]->deviceId(), (void *)mFilterAddr, mKernelInfo, mGemmInfo.elhPad[1], mPrecisonLevel, runtime);
|
|
}
|
|
|
|
// Run cutlass gemm forward
|
|
runCutlassGemmFunc();
|
|
|
|
// Run Col2Im
|
|
int convert_flag = mPrecisonLevel;
|
|
if(convert_flag == 0) {
|
|
convert_flag = 1;
|
|
}
|
|
callCol2ImFunc((const void*)mIm2ColBuffer, (const void*)mBiasAddr, (void *)output_addr, &mCol2ImParamter, convert_flag, runtime);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
|
|
}// namespace CUDA
|
|
}// namespace MNN |