MNN/source/backend/opencl/execution/image/LoopExecution.cpp

844 lines
39 KiB
C++

//
// LoopExecution.cpp
// MNN
//
// Created by MNN on 2023/05/04.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/LoopExecution.hpp"
#include "core/TensorUtils.hpp"
namespace MNN {
namespace OpenCL {
static void _TileTensor(Tensor *input, cl::Buffer *output, std::shared_ptr<KernelWrap>& kernelW, cl::NDRange &globalWorkSize,
cl::NDRange &localWorkSize, const int Width, const int Height, const int Channel,
const int Batch, OpenCLBackend *bn, std::set<std::string> buildOptions) {
if (TensorUtils::getDescribe(input)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC){
buildOptions.emplace("-DMNN_NHWC");
}
kernelW = bn->getOpenCLRuntime()->buildKernel("loop", "tile", buildOptions, bn->getPrecision(), input, input);
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(bn->getOpenCLRuntime()->getMaxWorkGroupSize(kernelW));
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(Width * Height), (uint32_t)(UP_DIV(Channel, 4)), (uint32_t)(Batch)};
auto kernel = kernelW->get();
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= kernel.setArg(index++, mGlobalWorkSize[2]);
ret |= kernel.setArg(index++, openCLImage(input));
ret |= kernel.setArg(index++, *output);
ret |= kernel.setArg(index++, Width);
ret |= kernel.setArg(index++, Height);
ret |= kernel.setArg(index++, Channel);
MNN_CHECK_CL_SUCCESS(ret, "setArg Loop _PackTensor");
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, bn->getOpenCLRuntime(), "tile", kernelW, bn->getCLTuneLevel()).first;
globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
bn->recordKernel3d(kernelW, mGlobalWorkSize, mLocalWorkSize);
}
static void _PackTensor(cl::Buffer *input, Tensor *output, std::shared_ptr<KernelWrap>& kernelW, cl::NDRange &globalWorkSize,
cl::NDRange &localWorkSize, const int Width, const int Height, const int Channel,
const int Batch, OpenCLBackend *bn, std::set<std::string> buildOptions) {
if (TensorUtils::getDescribe(output)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC){
buildOptions.emplace("-DMNN_NHWC");
}
kernelW = bn->getOpenCLRuntime()->buildKernel("loop", "pack", buildOptions, bn->getPrecision(), output, output);
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(bn->getOpenCLRuntime()->getMaxWorkGroupSize(kernelW));
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(Width * Height), (uint32_t)(UP_DIV(Channel, 4)), (uint32_t)(Batch)};
auto kernel = kernelW->get();
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= kernel.setArg(index++, mGlobalWorkSize[2]);
ret |= kernel.setArg(index++, *input);
ret |= kernel.setArg(index++, openCLImage(output));
ret |= kernel.setArg(index++, Width);
ret |= kernel.setArg(index++, Height);
ret |= kernel.setArg(index++, Channel);
MNN_CHECK_CL_SUCCESS(ret, "setArg Loop _PackTensor");
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, bn->getOpenCLRuntime(), "pack", kernelW, bn->getCLTuneLevel()).first;
globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
bn->recordKernel3d(kernelW, mGlobalWorkSize, mLocalWorkSize);
}
static void _setTensorStack(std::vector<Tensor *> &result, const std::vector<Tensor *> &inputs,
const std::vector<Tensor *> &outputs, const LoopParam *loop) {
if (loop->inputIndexes() != nullptr) {
for (int i = 0; i < loop->inputIndexes()->size(); ++i) {
result[loop->inputIndexes()->data()[i]] = inputs[i];
}
}
for (int i = 0; i < loop->outputIndexes()->size(); ++i) {
result[loop->outputIndexes()->data()[i]] = outputs[i];
}
}
LoopGatherExecution::LoopGatherExecution(const LoopParam *loop, const MNN::Op *op, Backend *bn)
: CommonExecution(bn, op) {
mLoop = loop;
mTensors.resize(mLoop->tensorNumber());
}
ErrorCode LoopGatherExecution::InitCommandOnEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){
auto cmd = mLoop->initCommand()->GetAs<RegionCommand>(0);
OpenCLBackend *mOpenCLBackend = (OpenCLBackend *)backend();
auto runTime = mOpenCLBackend->getOpenCLRuntime();
auto bufferPool = mOpenCLBackend->getBufferPool();
auto bufferUnitSize = mOpenCLBackend->getPrecision() != BackendConfig::Precision_High ? sizeof(half_float::half) : sizeof(float);
if (cmd->op() == nullptr){
Unit unit;
auto output = mTensors[cmd->indexes()->data()[0]];
auto outputShape = tensorShapeFormat(output);
int region[] = {outputShape[0], UP_DIV(outputShape[3], 4), outputShape[1], outputShape[2]};//nhwc
unit.kernel = runTime->buildKernel("raster", "image_set_zero", {}, mOpenCLBackend->getPrecision(), output, output);
unit.localWorkSize = {8, 8};
unit.globalWorkSize = {(uint32_t)UP_DIV((region[1] * region[3]), 16)*16,
(uint32_t)UP_DIV((region[0] * region[2]), 16)*16};
int global_dim0 = region[1] * region[3];
int global_dim1 = region[0] * region[2];
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, global_dim0);
ret |= unit.kernel->get().setArg(idx++, global_dim1);
ret |= unit.kernel->get().setArg(idx++, openCLImage(output));
if(ret != CL_SUCCESS)
{
MNN_PRINT("setArg err %d\n", (int)ret);
}
mOpenCLBackend->recordKernel2d(unit.kernel,
{(uint32_t)UP_DIV((region[1] * region[3]), 16)*16,
(uint32_t)UP_DIV((region[0] * region[2]), 16)*16},
{8, 8});
mUnits.emplace_back(unit);
return NO_ERROR;
}
mTmpInitBuffers.resize(2);
int x = cmd->size()->data()[0];
int y = cmd->size()->data()[1];
int z = cmd->size()->data()[2];
int inputSize = mTensors[cmd->indexes()->data()[1]]->elementSize();
auto srcStride = cmd->view()->GetAs<View>(1)->stride()->data();
auto dstStride = cmd->view()->GetAs<View>(0)->stride()->data();
for(int i = 0; i < 3; ++i) {
mStride_src[i] = srcStride[i];
mStride_dst[i] = dstStride[i];
}
mStride_src[3] = 0;
mStride_dst[3] = 0;
::memset(mStep, 0, 2 * sizeof(int));
// tile input
{
auto input = mTensors[cmd->indexes()->data()[1]];
std::vector<int> Shape = tensorShapeFormat(input);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
mTmpInitBuffers[1] = bufferPool->alloc(input->elementSize() * bufferUnitSize);
Unit unit;
_TileTensor(mTensors[cmd->indexes()->data()[1]], mTmpInitBuffers[1], unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height,Channel, Batch, mOpenCLBackend, mBuildOptions);
mUnits.emplace_back(unit);
}
// tile output
{
auto output = mTensors[cmd->indexes()->data()[0]];
std::vector<int> Shape = tensorShapeFormat(output);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
mTmpInitBuffers[0] = bufferPool->alloc(output->elementSize() * bufferUnitSize);
Unit unit;
_TileTensor(mTensors[cmd->indexes()->data()[0]], mTmpInitBuffers[0], unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height,Channel, Batch, mOpenCLBackend, mBuildOptions);
mUnits.emplace_back(unit);
}
// gather
{
int offset_index = 0;
Unit unit;
std::string KernelName = "batch_gather";
unit.kernel = runTime->buildKernel("loop", KernelName, mBuildOptions, mOpenCLBackend->getPrecision(), mTensors[cmd->indexes()->data()[1]], mTensors[cmd->indexes()->data()[0]]);
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(x * y), (uint32_t)(z), (uint32_t)(1)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[2]);
ret |= unit.kernel->get().setArg(index++, *mTmpInitBuffers[0]);
ret |= unit.kernel->get().setArg(index++, *mTmpInitBuffers[1]);
ret |= unit.kernel->get().setArg(index++, x);
ret |= unit.kernel->get().setArg(index++, sizeof(mStride_src), mStride_src);
ret |= unit.kernel->get().setArg(index++, sizeof(mStride_dst), mStride_dst);
ret |= unit.kernel->get().setArg(index++, sizeof(mStep), mStep);
ret |= unit.kernel->get().setArg(index++, inputSize);
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopGatherExecution");
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runTime, KernelName, unit.kernel, mOpenCLBackend->getCLTuneLevel()).first;
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
mUnits.emplace_back(unit);
}
//pack output
{
auto output = mTensors[cmd->indexes()->data()[0]];
std::vector<int> Shape = tensorShapeFormat(output);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
Unit unit;
_PackTensor(mTmpInitBuffers[0], mTensors[cmd->indexes()->data()[0]], unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, mOpenCLBackend, mBuildOptions);
mUnits.emplace_back(unit);
}
return NO_ERROR;
}
ErrorCode LoopGatherExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto cmd = mLoop->commands()->GetAs<RegionCommand>(0);
OpenCLBackend *mOpenCLBackend = (OpenCLBackend *)backend();
auto runTime = mOpenCLBackend->getOpenCLRuntime();
auto bufferPool = mOpenCLBackend->getBufferPool();
auto bufferUnitSize = mOpenCLBackend->getPrecision() != BackendConfig::Precision_High ? sizeof(half_float::half) : sizeof(float);
_setTensorStack(mTensors, inputs, outputs, mLoop);
mUnits.clear();
if(mLoop->initCommand() != nullptr){
InitCommandOnEncode(inputs, outputs);
}
mOffsetBuffers.clear();
mTmpBuffers.resize(2);
int x = cmd->size()->data()[0];
int y = cmd->size()->data()[1];
int z = cmd->size()->data()[2];
int n = mLoop->loopNumber();
int inputSize = mTensors[cmd->indexes()->data()[1]]->elementSize();
auto srcStride = cmd->view()->GetAs<View>(1)->stride()->data();
auto dstStride = cmd->view()->GetAs<View>(0)->stride()->data();
for (int i = 0; i < 3; ++i) {
mStride_src[i] = srcStride[i];
mStride_dst[i] = dstStride[i];
}
mStride_src[3] = cmd->view()->GetAs<View>(1)->offset();
mStride_dst[3] = cmd->view()->GetAs<View>(0)->offset();
::memcpy(mStep, cmd->steps()->data(), cmd->steps()->size() * sizeof(int));
::memcpy(mIter, cmd->iterIndexes()->data(), cmd->iterIndexes()->size() * sizeof(int));
// tile input
{
auto input = mTensors[cmd->indexes()->data()[1]];
std::vector<int> Shape = tensorShapeFormat(input);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
mTmpBuffers[1] = bufferPool->alloc(input->elementSize() * bufferUnitSize);
Unit unit;
_TileTensor(mTensors[cmd->indexes()->data()[1]], mTmpBuffers[1], unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height,Channel, Batch, mOpenCLBackend, mBuildOptions);
mUnits.emplace_back(unit);
}
// tile output
{
auto output = mTensors[cmd->indexes()->data()[0]];
std::vector<int> Shape = tensorShapeFormat(output);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
mTmpBuffers[0] = bufferPool->alloc(output->elementSize() * bufferUnitSize);
Unit unit;
_TileTensor(mTensors[cmd->indexes()->data()[0]], mTmpBuffers[0], unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height,Channel, Batch, mOpenCLBackend, mBuildOptions);
mUnits.emplace_back(unit);
}
for(int i = 0; i < cmd->iterIndexes()->size(); ++i){
if (mIter[i] >= 0) {
auto input = mTensors[cmd->iterIndexes()->data()[i]];
std::vector<int> Shape = tensorShapeFormat(input);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
mOffsetBuffers.emplace_back(bufferPool->alloc(input->elementSize() * bufferUnitSize));
Unit unit;
_TileTensor(input, mOffsetBuffers.back(), unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, mOpenCLBackend, mBuildOptions);
mUnits.emplace_back(unit);
}
}
// gather
{
int offset_index = 0;
std::set<std::string> buildOptions = mBuildOptions;
if (mIter[0] >= 0) {
buildOptions.emplace("-DOFFSET_DST");
}
if (mIter[1] >= 0) {
buildOptions.emplace("-DOFFSET_SRC");
}
Unit unit;
std::string KernelName = "batch_gather";
unit.kernel = runTime->buildKernel("loop", KernelName, buildOptions, mOpenCLBackend->getPrecision(), mTensors[cmd->indexes()->data()[1]], mTensors[cmd->indexes()->data()[0]]);
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(x * y), (uint32_t)(z), (uint32_t)(n)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[2]);
ret |= unit.kernel->get().setArg(index++, *mTmpBuffers[0]);
ret |= unit.kernel->get().setArg(index++, *mTmpBuffers[1]);
for (int i = 0; i < cmd->iterIndexes()->size(); ++i) {
if (mIter[i] >= 0) {
ret |= unit.kernel->get().setArg(index++, *mOffsetBuffers[offset_index++]);
}
}
ret |= unit.kernel->get().setArg(index++, x);
ret |= unit.kernel->get().setArg(index++, sizeof(mStride_src), mStride_src);
ret |= unit.kernel->get().setArg(index++, sizeof(mStride_dst), mStride_dst);
ret |= unit.kernel->get().setArg(index++, sizeof(mStep), mStep);
ret |= unit.kernel->get().setArg(index++, inputSize);
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopGatherExecution");
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runTime, KernelName, unit.kernel, mOpenCLBackend->getCLTuneLevel()).first;
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
mUnits.emplace_back(unit);
}
//pack output
{
auto output = mTensors[cmd->indexes()->data()[0]];
std::vector<int> Shape = tensorShapeFormat(output);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
Unit unit;
_PackTensor(mTmpBuffers[0], mTensors[cmd->indexes()->data()[0]], unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, mOpenCLBackend, mBuildOptions);
mUnits.emplace_back(unit);
}
for (int i = 0; i < mTmpBuffers.size(); ++i) {
bufferPool->recycle(mTmpBuffers[i]);
}
for (int i = 0; i < mOffsetBuffers.size(); ++i) {
bufferPool->recycle(mOffsetBuffers[i]);
}
if(mLoop->initCommand() != nullptr){
for (int i = 0; i < mTmpInitBuffers.size(); ++i) {
bufferPool->recycle(mTmpInitBuffers[i]);
}
}
return NO_ERROR;
}
LoopBatchMatMulExecution::LoopBatchMatMulExecution(const LoopParam *loop, const MNN::Op *op, Backend *bn)
: CommonExecution(bn, op) {
mLoop = loop;
mTensors.resize(mLoop->tensorNumber());
}
ErrorCode LoopBatchMatMulExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto cmd = mLoop->commands()->GetAs<RegionCommand>(0);
mHasBias = cmd->indexes()->size() > 3;
mTransposeA = cmd->op()->main_as_MatMul()->transposeA();
mTransposeB = cmd->op()->main_as_MatMul()->transposeB();
OpenCLBackend *mOpenCLBackend = (OpenCLBackend *)backend();
auto runTime = mOpenCLBackend->getOpenCLRuntime();
auto bufferPool = mOpenCLBackend->getBufferPool();
auto bufferUnitSize = mOpenCLBackend->getPrecision() != BackendConfig::Precision_High ? sizeof(half_float::half) : sizeof(float);
_setTensorStack(mTensors, inputs, outputs, mLoop);
mOffset[0] = cmd->view()->GetAs<View>(0)->offset();
mOffset[1] = cmd->view()->GetAs<View>(1)->offset();
mOffset[2] = cmd->view()->GetAs<View>(2)->offset();
mUnits.clear();
mOffsetBuffers.clear();
mTmpBuffers.resize(3);
if (mHasBias) {
mTmpBuffers.resize(4);
mOffset[3] = cmd->view()->GetAs<View>(3)->offset();
}
::memcpy(mStep, cmd->steps()->data(), cmd->steps()->size() * sizeof(int));
::memcpy(mIter, cmd->iterIndexes()->data(), cmd->iterIndexes()->size() * sizeof(int));
int e = cmd->size()->data()[0];
int l = cmd->size()->data()[1];
int h = cmd->size()->data()[2];
int n = mLoop->loopNumber();
// tile input
for (int i = 1; i < cmd->indexes()->size(); ++i) {
auto input = mTensors[cmd->indexes()->data()[i]];
std::vector<int> Shape = tensorShapeFormat(input);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
mTmpBuffers[i] = bufferPool->alloc(Batch * Channel * ROUND_UP(Height, 4) * ROUND_UP(Width, 4) * bufferUnitSize);
Unit unit;
_TileTensor(input, mTmpBuffers[i], unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, mOpenCLBackend, mBuildOptions);
mUnits.emplace_back(unit);
}
for(int i = 0; i < cmd->iterIndexes()->size(); ++i){
if (mIter[i] >= 0) {
auto input = mTensors[cmd->iterIndexes()->data()[i]];
std::vector<int> Shape = tensorShapeFormat(input);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
mOffsetBuffers.emplace_back(bufferPool->alloc(input->elementSize() * bufferUnitSize));
Unit unit;
_TileTensor(input, mOffsetBuffers.back(), unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, mOpenCLBackend, mBuildOptions);
mUnits.emplace_back(unit);
}
}
// matmul
{
mTmpBuffers[0] = bufferPool->alloc(n * e * h * bufferUnitSize);
int offset_index = 0;
Unit unit;
std::string KernelName = "batch_matmul";
std::set<std::string> buildOptions = mBuildOptions;
if (mHasBias) {
buildOptions.emplace("-DBIAS");
}
if (mTransposeA) {
buildOptions.emplace("-DTRANSPOSE_A");
}
if (mTransposeB) {
buildOptions.emplace("-DTRANSPOSE_B");
}
buildOptions.emplace("-DH_LEAVES=" + std::to_string(h % 4));
unit.kernel = runTime->buildKernel("loop", KernelName, buildOptions, mOpenCLBackend->getPrecision(), mTensors[cmd->indexes()->data()[1]], mTensors[cmd->indexes()->data()[0]]);
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(UP_DIV(h, 4)), (uint32_t)(UP_DIV(e, 4)),(uint32_t)(n)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[2]);
ret |= unit.kernel->get().setArg(index++, *mTmpBuffers[0]);
ret |= unit.kernel->get().setArg(index++, *mTmpBuffers[1]);
ret |= unit.kernel->get().setArg(index++, *mTmpBuffers[2]);
if (mHasBias) {
ret |= unit.kernel->get().setArg(index++, *mTmpBuffers[3]);
}
for (int i = 0; i < cmd->iterIndexes()->size(); ++i) {
if (mIter[i] >= 0) {
ret |= unit.kernel->get().setArg(index++, *mOffsetBuffers[offset_index++]);
} else {
ret |= unit.kernel->get().setArg(index++, *mTmpBuffers[0]);
}
}
ret |= unit.kernel->get().setArg(index++, e);
ret |= unit.kernel->get().setArg(index++, l);
ret |= unit.kernel->get().setArg(index++, h);
ret |= unit.kernel->get().setArg(index++, sizeof(mOffset), mOffset);
ret |= unit.kernel->get().setArg(index++, sizeof(mIter), mIter);
ret |= unit.kernel->get().setArg(index++, sizeof(mStep), mStep);
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopBatchMatMulExecution");
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runTime, KernelName, unit.kernel, mOpenCLBackend->getCLTuneLevel()).first;
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
mUnits.emplace_back(unit);
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
}
//pack output
{
auto output = mTensors[cmd->indexes()->data()[0]];
std::vector<int> Shape = tensorShapeFormat(output);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
Unit unit;
_PackTensor(mTmpBuffers[0], output, unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, mOpenCLBackend, mBuildOptions);
mUnits.emplace_back(unit);
}
for (int i = 0; i < mTmpBuffers.size(); ++i) {
bufferPool->recycle(mTmpBuffers[i]);
}
for (int i = 0; i < mOffsetBuffers.size(); ++i) {
bufferPool->recycle(mOffsetBuffers[i]);
}
return NO_ERROR;
}
LoopBinaryExecution::LoopBinaryExecution(const LoopParam *loop, const std::string &compute, const MNN::Op *op, Backend *bn)
: CommonExecution(bn, op) {
mLoop = loop;
mTensors.resize(mLoop->tensorNumber());
mBuildOptions.emplace("-DOPERATOR=" + compute);
}
ErrorCode LoopBinaryExecution::cumSumOnEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto cmd = mLoop->commands()->GetAs<RegionCommand>(0);
OpenCLBackend *mOpenCLBackend = (OpenCLBackend *)backend();
auto bufferPool = mOpenCLBackend->getBufferPool();
auto runTime = mOpenCLBackend->getOpenCLRuntime();
auto bufferUnitSize = mOpenCLBackend->getPrecision() != BackendConfig::Precision_High ? sizeof(half_float::half) : sizeof(float);
mUnits.clear();
mTmpBuffers.resize(2);
mOffset[0] = cmd->view()->GetAs<View>(0)->offset();
mOffset[1] = cmd->view()->GetAs<View>(1)->offset();
mOffset[2] = cmd->view()->GetAs<View>(2)->offset();
::memcpy(mStep, cmd->steps()->data(), cmd->steps()->size() * sizeof(int));
int loopNumber = mLoop->loopNumber();
int z = cmd->size()->data()[0];
int y = cmd->size()->data()[1];
int x = cmd->size()->data()[2];
int n = mLoop->loopNumber();
int inputSize = mTensors[cmd->indexes()->data()[1]]->elementSize();
auto src0Stride = cmd->view()->GetAs<View>(1)->stride()->data();
auto src1Stride = cmd->view()->GetAs<View>(2)->stride()->data();
auto dstStride = cmd->view()->GetAs<View>(0)->stride()->data();
for (int i = 0; i < 3; ++i) {
mStride_src0[i] = src0Stride[i];
mStride_src1[i] = src1Stride[i];
mStride_dst[i] = dstStride[i];
}
// tile input
// mTensors cmd->indexes()->data() = {2, 0, 1} -> {output, input0, input1}, output = input0
for (int i = 1; i < cmd->indexes()->size(); ++i) {
auto input = mTensors[cmd->indexes()->data()[i]];
std::vector<int> Shape = tensorShapeFormat(input);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
mTmpBuffers[i - 1] = bufferPool->alloc(Batch * Channel * ROUND_UP(Height, 4) * ROUND_UP(Width, 4) * bufferUnitSize);
Unit unit;
_TileTensor(input, mTmpBuffers[i - 1], unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, mOpenCLBackend, mBuildOptions);
mUnits.emplace_back(unit);
}
{
Unit unit;
std::set<std::string> buildOptions = mBuildOptions;
unit.kernel = runTime->buildKernel("loop", "loop_cumsum", buildOptions, mOpenCLBackend->getPrecision(), mTensors[cmd->indexes()->data()[1]], mTensors[cmd->indexes()->data()[0]]);
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(x), (uint32_t)(y), (uint32_t)(z)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[2]);
ret |= unit.kernel->get().setArg(index++, *mTmpBuffers[0]); // cumsum input0 == output -> mTmpBuffers[0] == mTmpBuffers[2]
ret |= unit.kernel->get().setArg(index++, *mTmpBuffers[0]);
ret |= unit.kernel->get().setArg(index++, *mTmpBuffers[1]);
ret |= unit.kernel->get().setArg(index++, mStride_src0[0]);
ret |= unit.kernel->get().setArg(index++, mStride_src0[1]);
ret |= unit.kernel->get().setArg(index++, mStride_src0[2]);
ret |= unit.kernel->get().setArg(index++, mStride_src1[0]);
ret |= unit.kernel->get().setArg(index++, mStride_src1[1]);
ret |= unit.kernel->get().setArg(index++, mStride_src1[2]);
ret |= unit.kernel->get().setArg(index++, mStride_dst[0]);
ret |= unit.kernel->get().setArg(index++, mStride_dst[1]);
ret |= unit.kernel->get().setArg(index++, mStride_dst[2]);
ret |= unit.kernel->get().setArg(index++, loopNumber);
ret |= unit.kernel->get().setArg(index++, sizeof(mOffset), mOffset);
ret |= unit.kernel->get().setArg(index++, sizeof(mStep), mStep);
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopCumsumExecution");
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runTime, "loop_cumsum", unit.kernel, mOpenCLBackend->getCLTuneLevel()).first;
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
mUnits.emplace_back(unit);
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
}
//pack output
{
auto output = mTensors[cmd->indexes()->data()[0]];
std::vector<int> Shape = tensorShapeFormat(output);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
Unit unit;
_PackTensor(mTmpBuffers[0], output, unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, mOpenCLBackend, mBuildOptions);
mUnits.emplace_back(unit);
}
for (int i = 0; i < mTmpBuffers.size(); ++i) {
bufferPool->recycle(mTmpBuffers[i]);
}
return NO_ERROR;
}
ErrorCode LoopBinaryExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto cmd = mLoop->commands()->GetAs<RegionCommand>(0);
if(cmd->op()->main_as_BinaryOp()->opType() == BinaryOpOperation_MOD && (outputs[0]->getType().code == halide_type_int || outputs[0]->getType().code == halide_type_uint)){
mBuildOptions.emplace("-DINT_COMPUTE_MOD");
}
OpenCLBackend *mOpenCLBackend = (OpenCLBackend *)backend();
auto runTime = mOpenCLBackend->getOpenCLRuntime();
_setTensorStack(mTensors, inputs, outputs, mLoop);
// cumsum
if(!mLoop->parallel())
return cumSumOnEncode(inputs, outputs);
mUnits.clear();
Unit unit;
auto input0 = mTensors[cmd->indexes()->data()[1]];
std::vector<int> Input0Shape = tensorShapeFormat(input0);
int Input0Size[4] = {Input0Shape.at(2), Input0Shape.at(1),Input0Shape.at(3),Input0Shape.at(0)};
auto input1 = mTensors[cmd->indexes()->data()[2]];
std::vector<int> Input1Shape = tensorShapeFormat(input1);
int Input1Size[4] = {Input1Shape.at(2), Input1Shape.at(1),Input1Shape.at(3),Input1Shape.at(0)};
auto output = mTensors[cmd->indexes()->data()[0]];
std::vector<int> Shape = tensorShapeFormat(output);
bool broadcastInput0 = false;
bool broadcastInput1 = false;
int input0Shape[8] = {1, 1, 1, 1, 1, 1, 1, 1};
int input1Shape[8] = {1, 1, 1, 1, 1, 1, 1, 1};
int outputShape[8] = {1, 1, 1, 1, 1, 1, 1, 1};
int offset0 = output->dimensions() - input0->dimensions();
int offset1 = output->dimensions() - input1->dimensions();
for (int i = 0; i < input0->dimensions(); ++i) {
input0Shape[i + offset0] = input0->length(i);
}
for (int i = 0; i < input1->dimensions(); ++i) {
input1Shape[i + offset1] = input1->length(i);
}
for(int i =0;i<output->dimensions();++i){
outputShape[i] = output->length(i);
}
if (TensorUtils::getDescribe(input0)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC)
{
int iN = input0Shape[0];
int iH = input0Shape[1];
int iW = input0Shape[2];
int iC = input0Shape[3];
if(input0->dimensions() > 4)
{
for(int i = 4; i < input0->dimensions(); i++)
{
iC *= input0Shape[i];
}
}
input0Shape[0] = iN;
input0Shape[1] = iC;
input0Shape[2] = iH;
input0Shape[3] = iW;
input0Shape[4] = 1;
}
if (TensorUtils::getDescribe(input1)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC)
{
int iN = input1Shape[0];
int iH = input1Shape[1];
int iW = input1Shape[2];
int iC = input1Shape[3];
if(input1->dimensions() > 4)
{
for(int i = 4; i < input1->dimensions(); i++)
{
iC *= input1Shape[i];
}
}
input1Shape[0] = iN;
input1Shape[1] = iC;
input1Shape[2] = iH;
input1Shape[3] = iW;
input1Shape[4] = 1;
}
if (TensorUtils::getDescribe(output)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC)
{
int iN = outputShape[0];
int iH = outputShape[1];
int iW = outputShape[2];
int iC = outputShape[3];
if(input1->dimensions() > 4)
{
for(int i = 4; i < input1->dimensions(); i++)
{
iC *= outputShape[i];
}
}
input1Shape[0] = iN;
outputShape[1] = iC;
outputShape[2] = iH;
outputShape[3] = iW;
outputShape[4] = 1;
}
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
const int ChannelBlock = UP_DIV(Channel, 4);
auto BuildOptions = mBuildOptions;
std::string KernelName = "broadcast_binary";
unit.kernel = runTime->buildKernel("loop", KernelName, BuildOptions, mOpenCLBackend->getPrecision(), input0, output);
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(Width), (uint32_t)(Height), (uint32_t)(Batch * ChannelBlock)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[2]);
ret |= unit.kernel->get().setArg(index++, openCLImage(output));
ret |= unit.kernel->get().setArg(index++, openCLImage(input0));
ret |= unit.kernel->get().setArg(index++, openCLImage(input1));
ret |= unit.kernel->get().setArg(index++, sizeof(input0Shape), input0Shape);
ret |= unit.kernel->get().setArg(index++, sizeof(Input0Size), Input0Size);
ret |= unit.kernel->get().setArg(index++, sizeof(input1Shape), input1Shape);
ret |= unit.kernel->get().setArg(index++, sizeof(Input1Size), Input1Size);
ret |= unit.kernel->get().setArg(index++, sizeof(outputShape), outputShape);
ret |= unit.kernel->get().setArg(index++, Width);
ret |= unit.kernel->get().setArg(index++, Height);
ret |= unit.kernel->get().setArg(index++, Channel);
ret |= unit.kernel->get().setArg(index++, ChannelBlock);
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopBinaryExecution");
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runTime, KernelName, unit.kernel, mOpenCLBackend->getCLTuneLevel()).first;
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
mUnits.emplace_back(unit);
return NO_ERROR;
}
class LoopCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
auto loop = op->main_as_LoopParam();
if (nullptr == loop || loop->commands() == nullptr) {
return nullptr;
}
// Make Tensor Stack
if (1 == loop->commands()->size()) {
auto cmd = loop->commands()->GetAs<RegionCommand>(0);
auto subop = cmd->op();
if (OpType_UnaryOp == subop->type() && nullptr == subop->main() && cmd->fuse() < 0) {
return new LoopGatherExecution(loop, op, backend);
}
if (OpType_MatMul == subop->type() && loop->parallel() && nullptr == loop->initCommand()) {
return new LoopBatchMatMulExecution(loop, op, backend);
}
if (OpType_BinaryOp == subop->type() && nullptr == loop->initCommand()) {
switch (subop->main_as_BinaryOp()->opType()) {
case BinaryOpOperation_MUL:
return new LoopBinaryExecution(loop, "in0*in1", op, backend);
case BinaryOpOperation_ADD:
return new LoopBinaryExecution(loop, "in0+in1", op, backend);
case BinaryOpOperation_SUB:
return new LoopBinaryExecution(loop, "in0-in1", op, backend);
case BinaryOpOperation_REALDIV:
return new LoopBinaryExecution(loop, "sign(in1)*in0/(fabs(in1)>(float4)((float)0.0000001)?fabs(in1):(float4)((float)0.0000001))", op, backend);
case BinaryOpOperation_MINIMUM:
return new LoopBinaryExecution(loop, "in0>in1?in1:in0", op, backend);
case BinaryOpOperation_MAXIMUM:
return new LoopBinaryExecution(loop, "in0>in1?in0:in1", op, backend);
case BinaryOpOperation_GREATER:
return new LoopBinaryExecution(loop, "convert_float4(-isgreater(in0,in1))", op, backend);
case BinaryOpOperation_LESS:
return new LoopBinaryExecution(loop, "convert_float4(-isless(in0,in1))", op, backend);
case BinaryOpOperation_LESS_EQUAL:
return new LoopBinaryExecution(loop, "convert_float4(-islessequal(in0,in1))", op, backend);
case BinaryOpOperation_GREATER_EQUAL:
return new LoopBinaryExecution(loop, "convert_float4(-isgreaterequal(in0,in1))", op, backend);
case BinaryOpOperation_EQUAL:
return new LoopBinaryExecution(loop, "convert_float4(-isequal(in0,in1))", op, backend);
case BinaryOpOperation_FLOORDIV:
return new LoopBinaryExecution(loop, "floor(sign(in1)*in0/(fabs(in1)>(float4)((float)0.0000001)?fabs(in1):(float4)((float)0.0000001)))", op, backend);
case BinaryOpOperation_FLOORMOD:
return new LoopBinaryExecution(loop, "in0-floor(sign(in1)*in0/(fabs(in1)>(float4)((float)0.0000001)?fabs(in1):(float4)((float)0.0000001)))*in1", op, backend);
case BinaryOpOperation_POW:
return new LoopBinaryExecution(loop, "pow(in0,in1)", op, backend);
case BinaryOpOperation_SquaredDifference:
return new LoopBinaryExecution(loop, "(in0-in1)*(in0-in1)", op, backend);
case BinaryOpOperation_ATAN2:
return new LoopBinaryExecution(loop, "(in1==(float4)0?(sign(in0)*(float4)(PI/2)):(atan(in0/in1)+(in1>(float4)0?(float4)0:sign(in0)*(float4)PI)))", op, backend);
case BinaryOpOperation_NOTEQUAL:
return new LoopBinaryExecution(loop, "convert_float4(-isnotequal(in0,in1))", op, backend);
case BinaryOpOperation_MOD:
return new LoopBinaryExecution(loop, "in0-floor(sign(in1)*in0/(fabs(in1)>(float4)((float)0.0000001)?fabs(in1):(float4)((float)0.0000001)))*in1", op, backend);
default:
break;
}
return nullptr;
}
}
return nullptr;
}
};
REGISTER_OPENCL_OP_CREATOR(LoopCreator, OpType_While, IMAGE);
} // namespace OpenCL
} // namespace MNN