mirror of https://github.com/alibaba/MNN.git
201 lines
7.8 KiB
C++
201 lines
7.8 KiB
C++
//
|
|
// PoolExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/02/28.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/opencl/execution/image/PoolExecution.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
#include "backend/opencl/core/OpenCLBackend.hpp"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
std::vector<uint32_t> PoolExecution::poolLocalWS(const std::vector<uint32_t> &gws, const uint32_t maxWorkGroupSize) {
|
|
std::vector<uint32_t> lws(3, 0);
|
|
auto maxWorkItemSizes = mOpenCLBackend->getOpenCLRuntime()->getMaxWorkItemSizes();
|
|
uint32_t deviceComputeUnits = mOpenCLBackend->getOpenCLRuntime()->deviceComputeUnits();
|
|
int coreNum = deviceComputeUnits;
|
|
for (int i = 0, totalSizeNow = 1; i < gws.size(); ++i) {
|
|
int remain = gws[i] % coreNum, groupSize = gws[i] / coreNum;
|
|
if (remain == 0) {
|
|
lws[i] = groupSize;
|
|
} else {
|
|
while(groupSize) {
|
|
int remain = gws[i] % groupSize;
|
|
if (remain == 0 && (i > 0 || groupSize <= maxWorkGroupSize)) {
|
|
lws[i] = groupSize;
|
|
break;
|
|
}
|
|
--groupSize;
|
|
}
|
|
}
|
|
int limit = std::min<uint32_t>(maxWorkGroupSize / totalSizeNow, maxWorkItemSizes[i]);
|
|
lws[i] = std::max<uint32_t>(std::min<uint32_t>(lws[i], limit), 1);
|
|
totalSizeNow *= lws[i];
|
|
}
|
|
return lws;
|
|
}
|
|
|
|
PoolExecution::PoolExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
|
|
: CommonExecution(backend, op) {
|
|
mUnits.resize(1);
|
|
auto &unit = mUnits[0];
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
mPoolParams = op->main_as_Pool();
|
|
mPoolType = mPoolParams->type();
|
|
|
|
mStrides[0] = mPoolParams->strideY();
|
|
mStrides[1] = mPoolParams->strideX();
|
|
mKernels[0] = mPoolParams->kernelY();
|
|
mKernels[1] = mPoolParams->kernelX();
|
|
|
|
mPaddings[0] = mPoolParams->padY() * 2;
|
|
mPaddings[1] = mPoolParams->padX() * 2;
|
|
mPadType = mPoolParams->padType();
|
|
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("pooling", "global_pooling", {"-DLOCAL_SIZE=512"}, mOpenCLBackend->getPrecision());
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(unit.kernel));
|
|
}
|
|
|
|
int PoolExecution::getLocalSize(int size, int maxGroupSize){
|
|
int local_size = 1;
|
|
while(local_size * 2 <= maxGroupSize && local_size * 2 <= size){
|
|
local_size *= 2;
|
|
}
|
|
return local_size;
|
|
}
|
|
|
|
ErrorCode PoolExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("start PoolExecution onResize !\n");
|
|
#endif
|
|
auto &unit = mUnits[0];
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
bool returnRedice = outputs.size() == 2;
|
|
auto redice = returnRedice ? outputs[1] : outputs[0];
|
|
std::set<std::string> buildOptions;
|
|
std::string kernelName = "pooling";
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
int local_size = 1;
|
|
|
|
if (mPoolParams->isGlobal()) {
|
|
std::vector<int> inputShape = tensorShapeFormat(inputs[0]);
|
|
mKernels = {inputShape.at(1), inputShape.at(2)};
|
|
mStrides = {inputShape.at(1), inputShape.at(2)};
|
|
mPaddings = {0, 0};
|
|
kernelName = "global_pooling";
|
|
auto MaxLocalSize = std::min(runtime->getMaxWorkItemSizes()[0], mMaxWorkGroupSize);
|
|
local_size = getLocalSize(inputShape.at(1) * inputShape.at(2), MaxLocalSize);
|
|
}
|
|
buildOptions.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
|
|
|
|
if (mPadType == PoolPadType_SAME) {
|
|
int padNeededHeight = std::max(0, (output->height() - 1) * mStrides[0] + mKernels[0] - input->height());
|
|
int padNeededWidth = std::max(0, (output->width() - 1) * mStrides[1] + mKernels[1] - input->width());
|
|
|
|
mPaddings[0] = padNeededHeight;
|
|
mPaddings[1] = padNeededWidth;
|
|
}else if (mPadType == PoolPadType_VALID) {
|
|
mPaddings[0] = mPaddings[1] = 0;
|
|
}
|
|
|
|
auto countType = mPoolParams->countType();
|
|
if (mPoolParams->pads() != nullptr && mPadType == PoolPadType_CAFFE) {
|
|
mPadType = PoolPadType_VALID;
|
|
}
|
|
|
|
if (countType == MNN::AvgPoolCountType_DEFAULT) {
|
|
if (mPadType == MNN::PoolPadType_CAFFE) {
|
|
countType = MNN::AvgPoolCountType_INCLUDE_PADDING;
|
|
} else {
|
|
countType = MNN::AvgPoolCountType_EXCLUDE_PADDING;
|
|
}
|
|
}
|
|
|
|
if (mPoolType == PoolType_AVEPOOL) {
|
|
buildOptions.emplace("-DPOOL_AVG");
|
|
if(countType == MNN::AvgPoolCountType_INCLUDE_PADDING){
|
|
buildOptions.emplace("-DCOUNT_INCLUDE_PADDING");
|
|
}
|
|
}
|
|
if(returnRedice){
|
|
buildOptions.emplace("-DRETURN_REDICE");
|
|
}
|
|
unit.kernel = runtime->buildKernel("pooling", kernelName, buildOptions, mOpenCLBackend->getPrecision());
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
|
|
|
|
MNN_ASSERT(mDilations[0] == 1 && mDilations[1] == 1);
|
|
|
|
std::vector<int> inputShape = tensorShapeFormat(input);
|
|
std::vector<int> outputShape = tensorShapeFormat(output);
|
|
|
|
const int batch = outputShape.at(0);
|
|
const int outputHeight = outputShape.at(1);
|
|
const int outputWidth = outputShape.at(2);
|
|
const int channels = outputShape.at(3);
|
|
|
|
const int inputHeight = inputShape.at(1);
|
|
const int inputWidth = inputShape.at(2);
|
|
|
|
int channelBlocks = (channels + 3) / 4;
|
|
std::vector<uint32_t> mGlobalWorkSize{1, 1, 1};
|
|
std::vector<uint32_t> mLocalWorkSize{1, 1, 1, 1};
|
|
if (mPoolParams->isGlobal()) {
|
|
mGlobalWorkSize = {
|
|
static_cast<uint32_t>(local_size),
|
|
static_cast<uint32_t>(channelBlocks),
|
|
static_cast<uint32_t>(batch),
|
|
};
|
|
mLocalWorkSize = {
|
|
static_cast<uint32_t>(local_size),
|
|
static_cast<uint32_t>(1),
|
|
static_cast<uint32_t>(1),
|
|
};
|
|
}else{
|
|
mGlobalWorkSize = {
|
|
static_cast<uint32_t>(channelBlocks),
|
|
static_cast<uint32_t>(outputWidth),
|
|
static_cast<uint32_t>(batch * outputHeight),
|
|
};
|
|
mLocalWorkSize = poolLocalWS(mGlobalWorkSize, mMaxWorkGroupSize);
|
|
}
|
|
|
|
int inputImageShape[2] = {inputHeight, inputWidth};
|
|
int paddingShape[2] = {mPaddings[0] / 2, mPaddings[1] / 2};
|
|
int strideShape[2] = {mStrides[0], mStrides[1]};
|
|
int kernelShape[2] = {mKernels[0], mKernels[1]};
|
|
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
|
|
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[2]);
|
|
ret |= unit.kernel->get().setArg(idx++, openCLImage(input));
|
|
ret |= unit.kernel->get().setArg(idx++, sizeof(inputImageShape), inputImageShape);
|
|
ret |= unit.kernel->get().setArg(idx++, static_cast<int32_t>(outputHeight));
|
|
ret |= unit.kernel->get().setArg(idx++, sizeof(paddingShape), paddingShape);
|
|
ret |= unit.kernel->get().setArg(idx++, sizeof(strideShape), strideShape);
|
|
ret |= unit.kernel->get().setArg(idx++, sizeof(kernelShape), kernelShape);
|
|
ret |= unit.kernel->get().setArg(idx++, openCLImage(output));
|
|
ret |= unit.kernel->get().setArg(idx++, openCLImage(redice));
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg PoolExecution");
|
|
|
|
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
|
|
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
|
|
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end PoolExecution onResize !\n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
using PoolCreator = TypedCreator<PoolExecution>;
|
|
REGISTER_OPENCL_OP_CREATOR(PoolCreator, OpType_Pooling, IMAGE);
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|