mirror of https://github.com/alibaba/MNN.git
147 lines
6.1 KiB
C++
147 lines
6.1 KiB
C++
//
|
|
// ScaleExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/02/28.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/opencl/execution/image/ScaleExecution.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
ScaleExecution::ScaleExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
|
|
: CommonExecution(backend, op) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("Start ScaleExecution init !\n");
|
|
#endif
|
|
mUnits.resize(1);
|
|
auto &unit = mUnits[0];
|
|
auto openclBackend = (OpenCLBackend *)backend;
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
const auto *scaleParams = op->main_as_Scale();
|
|
int scaleSize = scaleParams->scaleData()->size();
|
|
const float *scaleDataPtr = scaleParams->scaleData()->data();
|
|
|
|
size_t buffer_size = ALIGN_UP4(scaleSize) * sizeof(float);
|
|
cl::Buffer scaleBuffer(openclBackend->getOpenCLRuntime()->context(), CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, buffer_size);
|
|
cl_int error;
|
|
auto scalePtrCL = openclBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
|
|
scaleBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
|
|
if(nullptr != scalePtrCL && error == CL_SUCCESS){
|
|
::memset(scalePtrCL, 0, buffer_size);
|
|
::memcpy(scalePtrCL, scaleDataPtr, scaleSize * sizeof(float));
|
|
}else{
|
|
MNN_ERROR("Map error scalePtrCL == nullptr \n");
|
|
}
|
|
openclBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(scaleBuffer, scalePtrCL);
|
|
|
|
mScale.reset(Tensor::createDevice<float>({1, 1, 1, scaleSize}));
|
|
backend->onAcquireBuffer(mScale.get(), Backend::STATIC);
|
|
copyBufferToImage(openclBackend->getOpenCLRuntime(), scaleBuffer, openCLImage(mScale.get()), UP_DIV(scaleSize, 4),
|
|
1, mOpenCLBackend->getPrecision());
|
|
|
|
std::set<std::string> buildOptions;
|
|
if (nullptr != scaleParams->biasData() && nullptr != scaleParams->biasData()->data()) {
|
|
int biasSize = scaleParams->biasData()->size();
|
|
MNN_ASSERT(biasSize == scaleSize);
|
|
const float *biasDataPtr = scaleParams->biasData()->data();
|
|
|
|
int buffer_size = ALIGN_UP4(biasSize) * sizeof(float);
|
|
cl::Buffer biasBuffer(openclBackend->getOpenCLRuntime()->context(), CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, buffer_size);
|
|
cl_int error;
|
|
auto biasPtrCL = openclBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
|
|
biasBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
|
|
if(nullptr != biasPtrCL && error == CL_SUCCESS){
|
|
::memset(biasPtrCL, 0, buffer_size);
|
|
::memcpy(biasPtrCL, biasDataPtr, biasSize * sizeof(float));
|
|
}else{
|
|
MNN_ERROR("Map error biasPtrCL == nullptr \n");
|
|
}
|
|
openclBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(biasBuffer, biasPtrCL);
|
|
std::shared_ptr<Tensor> bias;
|
|
bias.reset(Tensor::createDevice<float>({1, 1, 1, biasSize}));
|
|
backend->onAcquireBuffer(bias.get(), Backend::STATIC);
|
|
copyBufferToImage(openclBackend->getOpenCLRuntime(), biasBuffer, openCLImage(bias.get()), UP_DIV(biasSize, 4),
|
|
1, mOpenCLBackend->getPrecision());
|
|
mBias = bias;
|
|
buildOptions.emplace("-DHAS_BIAS");
|
|
mHasBias = true;
|
|
}
|
|
std::string kernelName = "scale";
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
unit.kernel = runtime->buildKernel("scale", kernelName, buildOptions, mOpenCLBackend->getPrecision());
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end ScaleExecution init !\n");
|
|
#endif
|
|
}
|
|
|
|
ScaleExecution::~ScaleExecution() {
|
|
if (nullptr != mBias) {
|
|
mOpenCLBackend->onReleaseBuffer(mBias.get(), Backend::STATIC);
|
|
}
|
|
mOpenCLBackend->onReleaseBuffer(mScale.get(), Backend::STATIC);
|
|
}
|
|
|
|
ErrorCode ScaleExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("Start ScaleExecution onResize !\n");
|
|
#endif
|
|
|
|
auto &unit = mUnits[0];
|
|
std::vector<int> inputShape = tensorShapeFormat(inputs[0]);
|
|
|
|
const int batch = inputShape.at(0);
|
|
const int height = inputShape.at(1);
|
|
const int width = inputShape.at(2);
|
|
const int channels = inputShape.at(3);
|
|
|
|
const int channelBlocks = UP_DIV(channels, 4);
|
|
|
|
const std::vector<uint32_t> &gws = {static_cast<uint32_t>(channelBlocks),
|
|
static_cast<uint32_t>(width),
|
|
static_cast<uint32_t>(height * batch)};
|
|
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= unit.kernel->get().setArg(idx++, gws[0]);
|
|
ret |= unit.kernel->get().setArg(idx++, gws[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, gws[2]);
|
|
|
|
ret |= unit.kernel->get().setArg(idx++, openCLImage(inputs[0]));
|
|
ret |= unit.kernel->get().setArg(idx++, openCLImage(mScale.get()));
|
|
if (mHasBias) {
|
|
ret |= unit.kernel->get().setArg(idx++, openCLImage(mBias.get()));
|
|
}
|
|
ret |= unit.kernel->get().setArg(idx++, openCLImage(outputs[0]));
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg ScaleExecution");
|
|
|
|
std::string name = "scale";
|
|
std::vector<uint32_t> mGWS{1, 1, 1, 1};
|
|
std::vector<uint32_t> mLWS{1, 1, 1, 1};
|
|
mLWS = localWS3DDefault(gws, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), name, unit.kernel, mOpenCLBackend->getCLTuneLevel()).first;
|
|
for (size_t i = 0; i < gws.size(); ++i) {
|
|
mGWS[i] = ROUND_UP(gws[i], std::max((uint32_t)1, mLWS[i]));
|
|
}
|
|
|
|
mOpenCLBackend->recordKernel3d(unit.kernel, mGWS, mLWS);
|
|
unit.globalWorkSize = {mGWS[0], mGWS[1], mGWS[2]};
|
|
unit.localWorkSize = {mLWS[0], mLWS[1], mLWS[2]};
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end ScaleExecution onResize !\n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
using ScaleCreator = TypedCreator<ScaleExecution>;
|
|
REGISTER_OPENCL_OP_CREATOR(ScaleCreator, OpType_Scale, IMAGE);
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|