MNN/source/backend/opencl/execution/image/SelectExecution.cpp

77 lines
3.0 KiB
C++

//
// SelectExecution.cpp
// MNN
//
// Created by MNN on 2023/12/1.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/SelectExecution.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "backend/opencl/core/OpenCLBackend.hpp"
namespace MNN {
namespace OpenCL {
SelectExecution::SelectExecution(const MNN::Op *op, Backend* backend) : CommonExecution(backend, op) {
// Do nothing
}
ErrorCode SelectExecution::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
auto inSize1 = inputs[1]->elementSize();
auto inSize2 = inputs[2]->elementSize();
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
auto runtime = openCLBackend->getOpenCLRuntime();
std::set<std::string> buildOptions = mBuildOptions;
if(inSize1 == 1)
buildOptions.emplace("-DINSIZE1_EUQAL_1");
if(inSize2 == 1)
buildOptions.emplace("-DINSIZE2_EUQAL_1");
unit.kernel = runtime->buildKernel("select", "select_img", buildOptions, openCLBackend->getPrecision());
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
std::vector<int> outputShape = tensorShapeFormat(outputs[0]);
int batch = outputShape.at(0);
int outputHeight = outputShape.at(1);
int outputWidth = outputShape.at(2);
int channels = outputShape.at(3);
int channelBlocks = (channels + 3) / 4;
mGlobalWorkSize = {
static_cast<uint32_t>(channelBlocks * outputWidth),
static_cast<uint32_t>(batch * outputHeight)
};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLImage(inputs[0]));
ret |= unit.kernel->get().setArg(idx++, openCLImage(inputs[1]));
ret |= unit.kernel->get().setArg(idx++, openCLImage(inputs[2]));
ret |= unit.kernel->get().setArg(idx++, openCLImage(outputs[0]));
MNN_CHECK_CL_SUCCESS(ret, "setArg SelectExecution");
std::string kernelName = "select_img";
mLocalSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), kernelName, unit.kernel, openCLBackend->getCLTuneLevel()).first;
openCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalSize[0], mLocalSize[1]};
return NO_ERROR;
}
class SelectCreator : public OpenCLBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
return new SelectExecution(op, backend);
}
};
REGISTER_OPENCL_OP_CREATOR(SelectCreator, OpType_Select, IMAGE);
} // namespace OpenCL
} // namespace MNN