MNN/source/shape/ShapeArgMax.cpp

105 lines
3.7 KiB
C++

//
// ShapeArgMax.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
#include <vector>
namespace MNN {
class ArgMaxComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
MNN_ASSERT(1 == inputs.size());
MNN_ASSERT(1 == outputs.size());
// copy dims
auto &input = inputs[0]->buffer();
auto &output = outputs[0]->buffer();
output.dimensions = input.dimensions;
memcpy(output.dim, input.dim, sizeof(halide_dimension_t) * input.dimensions);
auto argMax = op->main_as_ArgMax();
const auto inputDimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
TensorUtils::getDescribe(outputs[0])->dimensionFormat = inputDimensionFormat;
if (inputDimensionFormat != MNN_DATA_FORMAT_NC4HW4) {
int axis = argMax->axis();
if(axis < 0){
axis = input.dimensions + axis;
}
// reduce axis dimension
output.dimensions = input.dimensions - 1;
for (int i = 0, j = 0; i < input.dimensions; ++i) {
if (i == axis) {
continue;
}
output.dim[j].extent = input.dim[i].extent;
j++;
}
output.dim[input.dimensions - 1].extent = 0;
// set output data type to be INT(according to tensorflow implementation)
output.type = halide_type_of<int>();
} else {
if (argMax->axis() == 0) {
// Legacy code
// key extent
// really legacy
output.type = halide_type_of<float>();
int keyExtent = argMax->topK();
if (argMax->outMaxVal()) {
keyExtent *= 2;
}
if (input.dim[3].extent > 1) {
output.dim[3].extent = keyExtent;
} else if (input.dim[2].extent > 1) { // iw = ow = 1
output.dim[2].extent = keyExtent;
} else { // iw = ow = 1, ih = oh = 1;
output.dim[1].extent = keyExtent;
}
} else {
TensorUtils::getDescribe(outputs[0])->dimensionFormat = inputDimensionFormat;
output.type = halide_type_of<float>();
int topK = argMax->topK();
int axis = argMax->axis();
// in caffe, axis may not exist, we set it to 10000 to indicate this situation
// see file: tools/converter/source/caffe/ArgMax.cpp
if (axis != 10000) {
if (argMax->outMaxVal()) {
output.dim[axis].extent = topK * 2;
} else {
output.dim[axis].extent = topK;
}
} else {
std::vector<int> outputShape(input.dimensions, 1);
outputShape[0] = input.dim[0].extent;
outputShape[2] = topK;
if (argMax->outMaxVal()) {
outputShape[1] = 2;
}
for (int ii = 0; ii < outputShape.size(); ii++) {
output.dim[ii].extent = outputShape[ii];
}
}
}
}
return true;
}
};
REGISTER_SHAPE(ArgMaxComputer, OpType_ArgMax);
REGISTER_SHAPE(ArgMaxComputer, OpType_ArgMin);
} // namespace MNN