MNN/source/shape/ShapeBroadcastTo.cpp

76 lines
2.7 KiB
C++

//
// ShapeBroadcastTo.cpp
// MNN
//
// Created by MNN on 2019/12/2.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
namespace MNN {
class ShapeBroadcastTo : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(inputs.size() == 2);
MNN_ASSERT(outputs.size() == 1);
auto input = inputs[0];
auto shape = inputs[1];
auto output = outputs[0];
int inputDims = input->dimensions();
int shapeDims = shape->elementSize();
output->buffer().dimensions = inputDims > shapeDims ? inputDims : shapeDims;
const int dimension = output->dimensions();
const int* shapeData = shape->host<int>();
if (op->main() && op->main_as_Axis()->axis()) {
for (int i = 0; i < dimension; i++) {
output->setLength(i, shapeData[i]);
}
} else {
int offset;
int alignShape[MNN_MAX_TENSOR_DIM];
if (inputDims > shapeDims) {
for (int i = 0; i < input->dimensions(); ++i) {
output->setLength(i, input->length(i));
}
offset = inputDims - shapeDims;
for (int i=0; i<shapeDims; ++i) {
alignShape[i] = shapeData[i];
}
} else {
for (int i = 0; i < shapeDims; ++i) {
output->setLength(i, shapeData[i]);
}
for (int i=0; i<input->dimensions(); ++i) {
alignShape[i] = input->length(i);
}
offset = shapeDims - inputDims;
}
for (int i = offset; i < output->dimensions(); ++i) {
int dim1 = alignShape[i - offset];
int dim2 = output->length(i);
if (dim1 != dim2 && (dim1 != 1 && dim2 != 1)) {
MNN_ERROR("Broad cast error, dim1 = %d, dim2 = %d\n", dim1, dim2);
return false;
}
if (dim1 == dim2) {
continue;
}
if (dim1 != 1) {
output->setLength(i, dim1);
}
}
}
output->buffer().type = input->buffer().type;
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(input)->dimensionFormat;
return true;
}
};
REGISTER_SHAPE_INPUTS(ShapeBroadcastTo, OpType_BroadcastTo, {1});
} // namespace MNN