mirror of https://github.com/alibaba/MNN.git
43 lines
1.2 KiB
C++
43 lines
1.2 KiB
C++
//
|
|
// ShapeDet.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/10.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "shape/SizeComputer.hpp"
|
|
#include "core/Macro.h"
|
|
|
|
namespace MNN {
|
|
class DetComputer : public SizeComputer {
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
if (inputs.size() != 1) {
|
|
MNN_ERROR("Det only accept 1 input\n");
|
|
return false;
|
|
}
|
|
auto shape = inputs[0]->shape();
|
|
int dim = shape.size();
|
|
if (dim < 2 || shape[dim - 1] != shape[dim - 2]) {
|
|
MNN_ERROR("input must be [*, M, M]\n");
|
|
return false;
|
|
}
|
|
auto& ib = inputs[0]->buffer();
|
|
auto& ob = outputs[0]->buffer();
|
|
|
|
ob.dimensions = dim - 2;
|
|
if (dim > 2) {
|
|
::memcpy(ob.dim, ib.dim, ob.dimensions * sizeof(halide_dimension_t));
|
|
}
|
|
ob.type = ib.type;
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
REGISTER_SHAPE(DetComputer, OpType_Det);
|
|
|
|
} // namespace MNN
|