MNN/source/shape/ShapeInterp.cpp

122 lines
4.4 KiB
C++

//
// ShapeInterp.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
namespace MNN {
// Size Computer
class InterpComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size() || 2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto& input = inputs[0]->buffer(); // input tensor(data)
auto& output = outputs[0]->buffer();
int w = 0;
int h = 0;
const int inputSize = (int)inputs.size();
auto iw = inputs[0]->width();
auto ih = inputs[0]->height();
// copy dims
memcpy(output.dim, input.dim, sizeof(halide_dimension_t) * input.dimensions);
outputs[0]->buffer().dimensions = inputs[0]->dimensions();
outputs[0]->buffer().type = inputs[0]->getType();
auto format = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
TensorUtils::getDescribe(outputs[0])->dimensionFormat = format;
if (2 == inputSize) {
auto shape = inputs[1]; // input shape(shape)
if(shape->length(0) == input.dimensions) {
// For Onnx's Resize
// Don't support batch / channel resize
if (shape->getType().code == halide_type_int) {
// Width / Height
auto shapePtr = shape->host<int>();
for (int i=0; i<input.dimensions; ++i) {
output.dim[i].extent = shapePtr[i];
}
} else {
// Scale
auto scalePtr = shape->host<float>();
for (int i=0; i<input.dimensions; ++i) {
output.dim[i].extent = (scalePtr[i] * (float)input.dim[i].extent);
}
}
return true;
}
}
if (1 == inputSize) {
// For old mnn model from onnx
auto interp = op->main_as_Interp();
// get output dims
w = interp->outputWidth();
h = interp->outputHeight();
if (w == 0 || h == 0) {
w = iw * interp->widthScale();
h = ih * interp->heightScale();
}
} else {
// For mnn model from tensorflow
auto shape = inputs[1]; // input shape(shape)
// Tensorflow's interp: h, w
if(2 != shape->buffer().dim[0].extent) {
MNN_ERROR("Tensorflow's interp's shape should be length two\n");
return false;
}
if (shape->getType().code == halide_type_float) {
const float *shapeData = shape->host<float>();
w = shapeData[1];
h = shapeData[0];
} else {
const int32_t *shapeData = shape->host<int32_t>();
w = shapeData[1];
h = shapeData[0];
}
}
if (0 == w && 0 == h) {
return false;
}
if (MNN_DATA_FORMAT_NHWC == format) {
output.dim[2].extent = w;
output.dim[1].extent = h;
} else {
output.dim[3].extent = w;
output.dim[2].extent = h;
}
return true;
}
virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto elementInM = (float)outputs[0]->elementSize() / 1024.0f / 1024.0f;
auto interp = op->main_as_Interp();
auto unit = 0;
int dimensions = inputs[0]->dimensions();
int interpDims = dimensions - 2;
switch (interp->resizeType()) {
case 1:
case 4:
unit = 1;
break;
case 2:
unit = (1 << interpDims);
break;
case 3:
unit = (4 << interpDims);
break;
default:
break;
}
return unit * elementInM;
}
};
REGISTER_SHAPE_INPUTS(InterpComputer, OpType_Interp, {1});
} // namespace MNN